
Chapter 2

Rigid Body Displacements

2.1 The Isometry Group

A rigid body displacement in Euclidean space, E3, can be described geometri-
cally as an Isometry. The following quote is from [1]:

“A bijective linear mapping of E3 onto itself which leaves the dis-
tance between every pair of distinct points, and the angle between
every pair of distinct lines, and planes, invariant.”

Injective (one-to-one)

At most one pre-image
∀ b ∈ {B}.

Surjective (onto)

At least one pre-image
∀ b ∈ {B}.

Bijective (one-to-one and onto)

Exactly one pre-image
∀ b ∈ {B}.

Figure 2.1: Injective, surjective, and bijective mappings.

A mapping is a functional relation from the set of elements of the domain
to the set of elements in the image. Mappings are also called correspondences
[2]. Consider the mappings from set A to set B illustrated in Figure 2.1, where
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a are the elements of set A, while b are the elements of set B. The mapping,
which can be represented algebraically as a linear transformation, can be one of
the following three types: injective; surjective; or bijective.

Suppose both sets A and B contain the integers, Z. An example of an
injective mapping from A to B is the integers in A multiplied by 2: Z ∗ 2. The
inverse of the mapping takes elements of set B and maps them to set A. The
inverse mapping is Z/2. Set B also contains all of the integers, but any odd
integer divided by 2 is a rational number Q, not an integer Z. Hence, the odd
b ∈ {B} have no pre-image, while all the even b have exactly one. Now, let sets
A and B contain the rational and irrational numbers, sets Q and P respectively.
A surjective mapping is the numbers in A squared: {Q,P}2. The inverse maps
an element of B as ±

√
b. So, many numbers in B have two pre-images, but

all have at least one. An example of a bijective mapping is the set of integers
+1: Z + 1. Clearly the inverse map Z− 1 is both one-to-one and onto: there is
exactly one pre-image in A for every element in B.

Although there is a motion associated with an isometry, the isometry does
not represent a motion: it is the correspondence between an initial and a fi-
nal position of a set of points. A motion is a continuous series of infinitesimal
displacements. Because an isometry maps collinear points into collinear points,
it transforms lines into lines, and hence is a collineation. The invariance of
distance also ensures that triangle vertices are transformed into congruent tri-
angle vertices. Thus, isometries preserve angle and are, therefore, also conformal
transformations.

The word set so far has been used to mean a collection for geometric and
algebraic objects. It may, however, be used more broadly to mean a collection of
any sort. The set of isometries includes the following transformations: rotation;
translation; screw; reflection (in a plane); central inversion (reflection in a point).
It is easy to show that the set of isometries, together with a binary operator
that combines any two of them, called product, defined on the set, constitutes a
group, G. The elements of G, {x, y, z, ...} and the product operator must satisfy
all the properties listed in Table (2.1) in order to constitute a group. Note that
commutativity is, in general, not a group property.

Table 2.1: Group properties.

i Closure (x ∗ y)εG ∀(x, y) ε G

ii Associativity (x ∗ y) ∗ z = x ∗ (y ∗ z) ∀ (x, y, z) ε G

iii Identity ∃ I ε G I ∗ x+ x ∗ I = x, ∀ x ε G
iv Inverse ∃ x−1 ε G x ∗ x−1 = x−1 ∗ x = I, ∀ x ε G

The isometry group of the Euclidean plane E2 is a sub-group of the isometry
group of E3. Every isometry is the product of, at most, four reflections. In E2,
four is replaced by three. Since a reflection reverses sense, an isometry is direct
or opposite according to whether it is the product of an even or odd number
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of reflections. The set of direct isometries form a sub-group. This is because
any product of direct isometries is another direct isometry. Whereas, the same
does not hold for opposite isometries: the product of two opposite isometries is
a direct isometry, violating the closure property. Hence, the opposite isometries
are not a sub-group. The sub-group of direct isometries is also known as the
group of Euclidean displacements, G6. The sub-script 6 refers to the fact that 6
generalized coordinates are required to specify a displacement. The sub-group
is also called special Euclidean 3D group, SE(3). In turn, the isometries are a
sub-group of the Euclidean similarity transformation group, the principal group
G7. Seven parameters determine a similarity transformation, the additional one
being a magnification factor to uniformly scale distances. The G7 transforma-
tions are conformal collineations, but the distance between two points is not, in
general, invariant.

2.2 Isometry in the Euclidean Plane

An isometry in E2 is a bijective mapping of the plane onto itself which preserves
distance, and can be represented algebraically by a congruent linear transfor-
mation. There are four isometries in the plane.

2.2.1 Reflection R in line r

Let r be any line in E2. A reflection in r leaves all points on r invariant, every
other point of E2 goes into the symmetrical point on a line right bisected by
r. The reflection R in line r reverses the order of the triangle ABC. That is,
the clockwise circulation of vertices ABC is transformed to a counter-clockwise
(CCW) circulation A′B′C ′, see Figure 2.1. The sense of the angles between
edges, AC and AB for instance, are reversed. Hence, reflections are opposite
isometries.

Figure 2.1: A reflection R in line r.
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It is easy to show that a reflection in an arbitrary line r, called a mirror line,
has the equations:

x′ = x cos(2ϕ) + y sin(2ϕ) + 2p cos(ϑ),

y′ = x sin(2ϕ)− y cos(2ϕ) + 2p sin(ϑ),

where ϕ is the angle r makes with the x-axis, CCW being positive, p is the
perpendicular distance from the origin of the referenced coordinate system to
the mirror line r, ϑ is the angle of the vector represented by this directed per-
pendicular connecting line segment, CCW being positive.

2.2.2 Rotation Sϑ About Centre S Through Angle ϑ

Let S be any point in E2, and ϑ be any measure of angle (CCW being positive).
A rotation in S through ϑ maps S onto itself, and any other point P onto P ′

such that distance SP = SP ′ and ∠PSP ′ = ϑ, see Figure 2.2. The rotation
about point S through angle ϑ preserves distance, angle, and sense. That is,
vertices of triangle ABC are mapped to A′B′C ′. The order of the vertices is
preserved as well as the sense of the angles between the edges. Hence, rotations
are direct, or positive isometries.

Figure 2.2: Rotation Sϑ.

An arbitrary rotation about any finite point has the following equations:

x′ = x cosϑ− y sinϑ+ Sx,

y′ = x sinϑ+ y cosϑ+ Sy,

where Sx, Sy are the (x,y) coordinates of rotation centre S.
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2.2.3 Translation τ

Let τ be a directed line-segment. A translation τ maps any point P onto P ′ in
the direction of τ a distance equal to the length of τ . The translation has no
finite invariant points. All points of E2 have different images under τ . Moreover,
translations are clearly direct isometries. They preserve distance, angle, sense,
and orientation.

Figure 2.3: Translation τ .

An arbitrary translation in E2 has the following linear equations:

x′ = x+ τx,

y′ = y + τy,

where τx and τy are the directed length of τ projected on the x and y axis,
respectively.

2.2.4 Glide-Reflection G

A glide-reflection G is an opposite isometry that has no invariant point, but has
a unique fixed line, called the axis of G. The glide-reflection can be represented
as the unique product of a translation and parallel reflection, see Figure 2.4.

Note that the product represented by τR implies the product operator sym-
bol ∗, which simplifies the representation of the associated algebraic equations,
thus

G = τ ∗R = τR.

G is represented by a half arrow the length of τ along the mirror line r
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Figure 2.4: Glide-reflection G = τR.

2.3 Every Isometry in E2 is the Product of At
Most Three Reflections

Every isometry can be represented, in many ways, as the products of different
isometries. For the glide-reflection this is self-evident by definition. The reflec-
tion may be considered as the fundamental isometry as all isometries in E2 may
be represented by the product of, at most, three reflections. In E3 replace three
with four.

Before proceeding, recall the group properties of isometries:

Closure Let us simply accept that the product of any two isometries results in
another isometry.

Associativity Consider three isometries A, B, and C.

(AB)C = A(BC).

Proof:

(AB)C = (A)(B)(C),

= (A)BC,

= A(BC).

Identity Let the isometry I be the one resulting in the following:

x = x,

y = y.



2.3. EVERY ISOMETRY IN E2 IS THE PRODUCTOF ATMOST THREE REFLECTIONS21

Figure 2.5: RR = I, the identity.

The identity leaves all points in E2 invariant. The identity can be con-
structed as the product of two successive reflections in the same line. The
first application of R maps P to P ′. The second application maps P ′ to
P ′′, which is P itself, see Figure 2.5.

Inverse Clearly, if an isometry can be “done”, it can always be “undone”. The
inverse is indicated with a −1 right superscript: S−1. This leads directly
to the result:

SS−1 = S−1S = I.

One commutative sub-group of isometries are the product of an isome-
try with its inverse. The product is otherwise, in general, not commutative,
although a commutative sub-group containing only the translations does ex-
ist, and is discussed in Section 2.6.1. Consider the situation in Figure 2.6.
Evidently, a translation results when R1 and R2 are parallel, but concatenation
in different order produces different translations. Displacements produced by
planar mechanisms must be direct, not opposite, isometries. Opposite isometries
reverse sense, implying that the associated motion required the mechanism to
leave the plane. Since this violates the planar condition, we need only consider
the direct isometries for planar mechanisms.

We now consider the following product theorems for the products of two
reflections:

Theorem: The product of two reflections in parallel lines is a translation in
a direction perpendicular to the lines, and whose magnitude is twice the
distance between the mirror lines.

Proof: The product R1R2 operates on all points in the plane, including the
mirror lines. The magnitude must be the same for all points. The points
on r1 stay on r1 under R1, but are reflected in r2 on lines right bisected
by r2. The magnitude is clearly twice the distance between r1 and r2.
Consider R1R2 in Figure 2.7. Note: The mirror lines are not unique!!! The
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Figure 2.6: Product of two parallel reflections.

product of two reflections in any two lines parallel to r1 and r2 separated
by distance d will yield τ .

Theorem: The product of two reflections in two finitely intersecting lines is a
rotation about the point of intersection through twice the angle between
the mirror lines, see Figure 2.8.

Proof: Clearly, SP = SP ′ = SP ′′. The angle between SP and SP ′′ is:

2(α+ β) = 2ϕ = ϑ

Note: The same rotation results for every pair of mirror lines through the
same point with angle ϕ between them.

2.4 Products of Three Reflections

While not important for planar mechanisms, the following theorems are impor-
tant for spacial mechanisms in particular, and for spatial kinematics in general.
There are four distinct ways to arrange three lines in the plane. Or course in
all cases, the product of three reflections must be another opposite isometry.

2.4.1 Case 1: All three mirror lines intersect in one point

Theorem: The product of three such reflections R1R2R3 is a single
reflection R, see Figure 2.9.
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Figure 2.7: Product of parallel reflections.

Figure 2.8: Product of two intersecting reflections.

Proof: Select r such that ∠r2r3 = ∠r1r. This condition means R2R3 = R1R.
Then R1(R2R3) = R1(R1R) = IR = R.

2.4.2 Case 2: All three mirror lines are parallel

Theorem: The product of three reflections R1, R2, R3 whose mirror lines are
all parallel is a single reflection, R, parallel to the given three.

Proof: Select r, as in Figure 2.10, to be parallel to r3 such that the directed
distance from r to r3 is identical to the directed distance from R1 to r2,
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Figure 2.9: Three reflections intersecting in one point.

giving:

R1R2 = RR3,

⇒ (R1R2)R3 = (RR3)R3,

= RI,

= R.

(2.1)

Figure 2.10: Three reflections with parallel mirror lines.

2.4.3 Case 3: Three reflections whose mirror lines inter-
sect in three distinct points

Before progressing to the theorem we must discuss two special products:
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1. The product of two reflections intersecting in perpendicular mirror lines
is a rotation through 180 degrees, called a half-turn, H = R1⊥R2.

2. The product of a reflection and a half turn whose centre is not on the
mirror line is a glide reflection.

The proof of 1 follows from definition. The proof of 2 uses the fact that a
glide is the product of a translation and a reflection in a line parallel to the
direction of the translation, and a translation is the product of two parallel
reflections, see Figure 2.11.

Figure 2.11: Glide-Reflection.

A rotation of 180 degrees about centre H can be represented in infinitely
many ways as the product of two reflections whose mirror lines intersect at H
and are mutually orthogonal. Now consider half-turn H and reflection R whose
mirror line does not pass through H. Decompose H into the product of R1R2

where r2 is parallel to r and r1 is perpendicular to r. Now HR = R1R2R =
R1τ = G. See Figures 2.12 and 2.13.

Theorem The product of three reflections R1R2R3 whose three mirror lines
r1, r2, r3 intersect in three distinct finite points is a glide-reflection.

Proof Select r4 and r5 such that r4⊥r1 and ∠r2r3 = ∠r4r5 and r4 and r5 are
incident on the intersection of r2 and r3, S. See Figure 2.14.

R1R2R3 = R1R4R5 since R1⊥R4,

= HR5 since R1R4,

= R7τ(2d),

= G.

The three reflections are equivalent to the glide-reflection, which is also
equivalent to the product of HR5, which can be decomposed into R7R6R5
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Figure 2.12: Rotations can be represented as the product of any two mirror
lines intersecting on the rotation centre separated by half the rotation angle.
The half-turn is no different.

such that (see Figure 2.15):

G = HR5,

= R7R6R5,

= R7τ(2d),

= G,

= R1R2R3.

2.4.4 Case 4: Three reflections with two parallel mirrors

Theorem: The product of three reflections where only two mirror lines are
parallel is a single glide-reflection.

Proof: Referring to see Figure 2.16, we can introduce R4 and R5 such that the
angle from r4 to r5 is ϑ with r5 orthogonal to r1 and r3, the two parallel
mirrors.

R1R2 = S2ϑ

= R4R5

⇒ R1R2R3 = R4R5R3

= R4H

= G.
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Figure 2.13: Product of half-turns and non-incident reflections are glide reflec-
tions.

Figure 2.14: Three reflections whose mirror lines intersect in three distinct finite
points are a glide-reflection.

Furthermore, referring to Figure 2.17, the resulting glide reflection can be
decomposed into the product R4R6R7:

G = R4R6R7 = τ2dR7.

2.4.5 Summary

Any isometry in E2 is, or can always be expressed as the product of, at most,
three reflections. For a summary, see Figure 2.18.
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Figure 2.15: The product of HR5.

Figure 2.16: Three reflections with only two parallel mirror lines is a glide-
reflection.

2.5 The Pole of a Planar Displacement

The group of planar displacements in E2 are the sub-group of the direct isome-
tries in E2. An important theorem, which we will use later on with kinematic
mapping, is that any general planar displacement can always be represented by
a single rotation. Even a pure translation may, if we bound E2 with the line at
infinity, L∞ (thereby creating the projective plane P2), be considered a rota-
tion through an infinitesimal angle about the point of intersection between L∞
and the normal to the direction of translation. The coordinates of this rotation
centre are invariant under the rotation. This unique point is the pole of the
displacement.

Before pursuing this topic, we must carefully discuss two different interpre-
tations of a displacement. One is a vector transformation where displacements
transform point position vectors. The other is a coordinate transformation
(which we will use almost exclusively). Here, the position vector is unmoving,
but the bases change relative to it.
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Figure 2.17: Equivalence to three reflections in two parallel mirrors.

2.5.1 Vector Transformation

The vector v′ is the image of vector v under a CCW rotation through angle ϑ,
centreed at the origin, see Figure 2.19. Given (x, y) and ϑ, what are (x′, y′)?

x = |v| cosϕ, y = |v| sinϕ
x′ = |v′| cos(ϕ+ ϑ), y′ = |v′| sin(ϕ+ ϑ).

We use the fact that |v| = |v′|, and the trigonometric identities:

cos(ϕ+ ϑ) = cosϕ cosϑ− sinϕ sinϑ,
sin(ϕ+ ϑ) = cosϕ sinϑ+ sinϕ cosϑ,

which gives:

x′ = |v′|[cosϕ cosϑ− sinϕ sinϑ],
y′ = |v′|[cosϕ sinϑ+ sinϕ cosϑ].

Now, using:

x = |v| cosϕ⇒ |v′| = x/ cosϕ,
y = |v| sinϕ⇒ |v′| = y/ sinϕ,

yields:

x′ = |v′| cosϕ cosϑ− |v′| sinϕ sinϑ = x cosϑ− y sinϑ,
y′ = |v′| cosϕ cosϑ+ |v′| sinϕ cosϑ = x sinϑ+ y cosϑ.

Assembling in matrix form yields the general vector transformation for rotation:

[
x′

y′

]
=

[
cosϑ − sinϑ
sinϑ cosϑ

] [
x
y

]
. (2.2)
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Figure 2.18: Summary of Isometries.

Figure 2.19: Vector transformation.

2.5.2 Coordinate Transformation

Given (x, y) and ϑ, what are (x′, y′), the coordinates of the same point in the
transformed coordinate system?

Referring to Figure 2.20, by inspection, we have:

Px′ = Px cosϑ+ Py sinϑ,
Py′ = Py cosϑ− Px sinϑ.

Assembling in matrix form:[
x′

y′

]
=

[
cosϑ sinϑ
− sinϑ cosϑ

] [
x
y

]
, (2.3)
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Figure 2.20: Coordinate transformation.

It is clear the rotation matrices in Equations (2.2) and (2.3) are each other’s
inverse. Hence, the interpretations are also inverse.

In kinematics we usually know the coordinates of points in the transformed
frame and need to know their coordinates in the original frame. For the rotation
matrix in Equation (2.3), this is simply the inverse:[

x
y

]
=

[
cosϑ − sinϑ
sinϑ cosϑ

] [
x′

y′

]
. (2.4)

2.5.3 General Planar Displacements

It is convenient to consider a general displacement of a rigid body in E2 as
the displacement of a reference coordinate system E that moves with the rigid
body relative to a fixed reference frame Σ. Moreover, let the coordinates of
points in E be described by the lowercase pairs (x, y) and those in Σ by the
uppercase pairs (X,Y ). A general displacement of E relative to Σ is described
by three numbers (a, b, ϕ), where (a, b) are the coordinates of OE (the origin
of E) expressed in Σ, and ϕ is the angle the x-axis makes with respect to the
X-axis, with CCW rotations considered as positive. The position of a point in
E described in Σ can be given by:[

X ′

Y ′

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
x′

y′

]
+

[
a
b

]
. (2.5)

Equation (2.5) is not a linear transformation because the translation of the sum
of two vectors x and y by the amount d is x + y + d, and not the sum of the
translation of each vector separately, which is (x + d) + (y + d) = x + y + 2d.
This violates the definition of a linear transformation.

If T : V →W is a function from the vector space V to the vector space W ,
then T is a linear transformation iff:

1. T (u + v) = T (u) + T (v), ∀ u and v ∈ V ;

2. T (ku) = Tk(u) ∀ u ∈ V and all scalars.
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Clearly, Equation (2.5) violates condition 1. Moreover it is not a linear
transformation because Equation (2.5) cannot be represented by an n×n matrix.
This situation can be remedied by the use of homogenous coordinates. They
will be discussed in detail later, but we can start using them now. They replace
cartesian coordinate pairs (x, y) with triples of ratios (x : y : z) such that:

x′ =
x

z
, y′ =

y

z
,

X ′ =
X

Z
, Y ′ =

Y

Z
.

Substituting these into Equation (2.5) gives:

X

Z
=

x

z
cosϕ− y

z
sinϕ+ a,

Y

Z
=

x

z
sinϕ+

y

z
cosϕ+ b. (2.6)

The third coordinate, Z and z may be thought of simply as scaling factors. As
long as Z 6= 0 and z 6= 0 we can set Z = z, multiply Equations (2.6) through by
Z and write Equation (2.5) as a linear transformation, which is computationally
extremely convenient: X

Y
Z

 =

 cosϕ − sinϕ a
sinϕ cosϕ b

0 0 1

 x
y
z

 . (2.7)

Equation (2.7) represents a displacement of reference frame E with respect to
Σ, see Figure 2.21. Displacements of E relative to Σ are completely described
by the three numbers a, b , ϕ where:

• (x : y : z) are the homogenous coordinates of points in E;

• (X : Y : Z) are the homogenous coordinates of the same point in Σ;

• (a, b) are the cartesian coordinates of the origin of E,OE measured in Σ,
i.e. the position vector of OE in Σ;

• ϕ is the rotation angle measured CCW from the X-axis towards the x-axis,
(CCW being considered positive).

The pole of a planar displacement is defined as the coordinates of the unique
invariant point, which is the eigenvector corresponding to the one real eigenvalue
of the matrix in Equation (2.7). Eigenvalues represent matrix invariants and
are roots of the characteristic equation:

λx = Ax,

(A− λI)x = 0. (2.8)
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Figure 2.21: A general displacement of E with respect to Σ in terms of a, b, ϕ.

With λ being the scalar leading to non-trivial solutions of Equation (2.8).
Non-trivial solutions exist if, and only if

det(A− λI) = 0.

For Equation (2.7) the characteristic polynomial is third order and factors to:

(1− λ)(λ2 − 2λ cosϕ+ 1) = 0

The three eigenvalues are:

λ1 = 1,

λ2 = eiϕ,

λ3 = e−iϕ.

The eigenvector associated with λ = 1 is the pole of the displacement. We can
compute it by setting Z = z = 1 and expanding Equation (2.7), revealing two
equations in two unknowns: the pole coordinates. From xp

yp
1

 =

 cosϕ − sinϕ a
sinϕ cosϕ b

0 0 1

 xp
yp
1

 ,
we get

xp − xp cosϕ+ yp sinϕ− a = 0,

yp − xp sinϕ− yp cosϕ− b = 0. (2.9)

Solving using Cramer’s rule, we obtain

xp =
1

2

(
a sinϕ− b(1 + cosϕ)

sinϕ

)
,

yp =
1

2

(
a(1 + cosϕ) + b sinϕ)

sinϕ

)
. (2.10)

A much more symmetric, and as it turns out useful, representation of the pole co-
ordinates are obtained if we use the half-angle substitutions in Equations (2.10):
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sinϕ = 2 sin(ϕ/2) cos(ϕ/2),
cosϕ = cos 2(ϕ/2)− sin 2(ϕ/2),

which gives

xp =
a sin(ϕ/2)− b cos(ϕ/2)

2 sin(ϕ/2)
,

yp =
a cos(ϕ/2) + b sin(ϕ/2)

2 sin(ϕ/2)
. (2.11)

The value of the homogenizing coordinate, which we choose to be Z = z, is ar-
bitrary and we are free to set it to be 2 sin(ϕ/2), which gives us the homogenous
coordinates of the pole (for now we ignore rotations of ϕ = 180 degrees.

Xp = xp = a sin(ϕ/2)− b cos(ϕ/2),

Yp = yp = a cos(ϕ/2) + b sin(ϕ/2),

Zp = zp = 2 sin(ϕ/2). (2.12)

The displacement which ends up translating OE to a, b and rotating the x-axis
by ϕ can be represented by a single rotation about point P by ϕ degrees, see
Figure 2.22. The pole coordinates of a displacement are used in the kinematic

Figure 2.22: Pole of a displacement.

mapping we shall be working with. But there is much ground to cover between
here and there.

2.6 Obtaining the Poles Geometrically

Obtaining the pole coordinates amounts to determining the products of the
sub-group of direct isometries. This requires looking at the products of two
translations, two rotations, and the product of a translation and rotation.
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2.6.1 Products of Translations

Because a translation involves no change in orientation, the product of any
number of sequential translations is a translation. Translations are represented
by free vectors, i.e. no specific line of action, only direction and magnitude.
Hence, they can always be arranged tip-to-tail, and the product of n translations
is the vector joining the tail of τ1 to the tip of τn, see Figure 2.23. By observation,
it is evident that the translations are a commutative sub-group of isometries.
The product τ is also a free vector: it is a directed line-segment that can be

Figure 2.23: The product of two translations is always a translation.

placed anywhere in the plane. These line segments all point towards the same
point on L∞ (so, we are really talking about P2, the projective plane... more
on that later). Similarly, the pencil, η, of normals to τ all intersect in another
unique point on L∞, see Figure 2.24. The projective plane P2 is bounded by

Figure 2.24: Model of the line at infinity, L∞.

a line that is infinitely distant. This line is the intersection of P2 and the
plane at infinity, π∞, and hence must be a line. However, it is a line with
some interesting properties. Two parallel lines, let’s say the directions of the



36 CHAPTER 2. RIGID BODY DISPLACEMENTS

(a) Pencil of lines. (b) Range of points.

Figure 2.25: An infinity of lines on a point and its dual: an infinity of points on
a line.

two parallel translations illustrated in Figure 2.24, intersect in one and only
one point on L∞, called P∞ in the figure, regardless of which direction that
L∞ is approached. So, for illustrative purposes only, the line at infinity is
usually represented as a circle, though it is obtained by the intersection of two
planes and hence must be a line and must be represented by a linear equation.
This reveals what seems to be a paradox from the standpoint of Euclidean
geometry: the projective plane P2 is infinite in extent, but it is also bounded by
the line at infinity, L∞. This apparent paradox is resolved later on by examining
the structure of projective geometry, which turns out to be embedded in the
structure of all linear geometries.

With the above in mind, the product of two translations can be represented
by a rotation about a unique centre S on L∞ through an infinitesimally small
angle. Thus, the pole of a translation is always a point on L∞.

2.6.2 Products of Rotations

Clearly, the product of any number of rotations about a single centre is a ro-
tation about that same centre through the sum of the signed angles of the
individual rotations. For two rotations with distinct centres, there are three
cases to consider. Using these three cases, the product of any number of rota-
tions about arbitrary centres can be determined. This product will always be a
rotation, or a translation, with the exception of degenerate cases. Of course, in
the projective geometric sense, the product is always a rotation.

Case 1: Same rotation angle, two distinct centres. This product will be written
as AϑBϑ. Recall, we can represent a rotation Aϑ in many ways by two
intersecting mirror lines. Actually, they are a pencil of line pairs on the
rotation centre separated by angle ϑ/2, see Figure 2.25a.

To determine the pole and equivalent single rotation we make the following
construction. Select r to contain both centres A and B. Then, Aϑ = R1R
and Bϑ = RR2. The product of the two rotations A and B is another
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rotation, Cϕ:
AϑBϑ = R1RRR2 = R1R2 = Cϕ.

Note: the two identical rotations, R, combine as the identity, I. The rota-
tion angle is easy to obtain from a basic triangle theorem: the sum of the
interior angles equals 180 degrees (or π radians), see Figure 2.26. Hence,

Figure 2.26: Two rotations AϑBϑ, same angle, distinct centres.

we can write:
ϑ

2
+
ϑ

2
+
(

180− ϕ

2

)
= 180

⇒ ϕ = 2ϑ.

The rotation centre of C is the invariant point of the product of Aϑ and
Bϑ.

Case 2: Same angle, but opposite sense, two distinct centres. We proceed as in
Case 1. Referring to Figure 2.27, select r to contain both centres A and

Figure 2.27: Two rotations with distinct centres and equal angles with opposite
sense.

B. With this construction Aϑ = R1R and B−ϑ = RR2, which yields

AϑB−ϑ = R1RRR2 = R1R2 = τ.

Clearly, remaining mirror lines r1 and r2 are parallel because of this con-
struction, and hence the isometry resulting from the product AϑB−ϑ is
the translation τ . The distance d is simply

d = |AB| sin
(

180− ϑ

2

)
.
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But as discussed earlier, this translation in E2 can be considered a rotation
in P2.

Case 3 Two different angles and two distinct centres, see Figure 2.28. We

Figure 2.28: Two different rotation centres and angles.

proceed with the same construction as in Cases 1 and 2 by selecting r to
contain both rotation centres A and B, yielding

AϑBϕ = R1RRR2 = R1R2 = Cψ.

The angle ψ is obtained as:

ϑ

2
+
ϕ

2
+ (180− ψ

2
) = 180

⇒ ψ = ϑ+ ϕ.

The location of this rotation centre C can be determined for both Cases
1 and 3 using the Law of Sines, with triangle edge lengths and interior
angles as defined in Figure 2.29.

Figure 2.29: Law of sines.

sinα

a
=

sinβ

b
=

sin γ

c
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⇒ c =
sin γ

sinβ
b.

For the Case 3 triangle shown in Figure 2.28

|CB| = sin(ϑ/2)

sin(180− ψ/2)
|AB|,

which gives the coordinates of C in reference frame Σ. We see immediately
that the products of rotations are not a commutative sub-group.

2.6.3 Products of Translations and Rotations

Here we can have τS and Sτ , which are in general different displacements.
Hence, these products are generally not commutative.

Figure 2.30: Product of translation and rotation.

Translation followed by Rotation: τSϑ. We decompose the product as in
Figure 2.30:

τSϑ = R1RRR2 = R1R2 = Pϑ.

This product is a rotation through the same angle ϑ but about a translated
centre. The coordinates of P relative to S are simply the basis elements
of the position vector of distance |SP | given by:

|SP | = d
sin(ϑ/2)

Rotation centre P is the pole of the product of displacements.

Rotation followed by Translation: Sϑτ . We take product of the same dis-
placements, but in opposite order, as shown in Figure 2.31 and write:

Sϑτ = R1RRR2 = R1R2 = Qϑ,

which is again a rotation, but about a different centre. Hence these prod-
ucts are not commutative, but still a sub-group of the group of planar
isometries.

We can use these results to determine the pole coordinates for any arbitrary
product of planar displacements.
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Figure 2.31: Product of a rotation and a translation.

2.7 Computing DOF Using Group Concepts

The relative motion associated with each of the lower kinematic pairs illustrated
in Figure 2.32 constitute a sub-group of the group of Euclidean displacements G6

under the binary product operator (i.e. the composition of two displacements).
In other words, the motions of all R-pairs are a sub-group of G6, the motions
of all E-pairs are a sub-group of G6, etc.. The dimension of these sub-groups is
defined to be the degree of freedom (DOF) of the relative motion permitted by
the lower pair. The dimension is indicated by dim(GS), where GS ⊂ G6. These
sub-groups, together with their corresponding dimension are listed in Table 2.2.

Figure 2.32: The six lower pairs: (a) R, revolute; (b) P , prismatic; (c) H,
helical; (d) C, cylindrical; (e) S, spherical; (f) E, planar.
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Table 2.2: Lower Pair Sub-groups and Their Dimension

Lower Pair GS dim(GS)

E E 3

S S 3

C C 2

H H 1

P P 1

R R 1

Let the product of two sub-groups indicated by

G′ = G1 ∗G2

be the composition of the displacements they represent. Let dim(G′) = d.
In the mathematical model which follows, d represents the maximum possible
motion group dimension. In E3 d = 6; in E2, the absolute maximum is d = 3.
This is because in E2 the origin of the moving reference frame E can translate
independently in both the X and Y basis vector directions in Σ in any linear
combination, and E can change it’s orientation about any axis normal to the
relatively fixed and moving coordinate systems. For example, consider the RPR
linkage shown in Figure 2.33, which implies a serial chain of four links connected
to ground by a sequence of revolute-prismatic-revolute joints. In E3, d = 6
because there are three linearly independent translation directions and three
linearly independent rotations about basis vector directions. The ith kinematic

Figure 2.33: Reference frame E has 3 DOF relative to Σ ⇒ d = 3.

pair imposes µi constraints on the two links it couples. For example, in E3 R-,
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P -, and H-pairs impose five constraints, a C-pair imposes four constraints, while
S- and E-pairs impose three. However, in E2 S-, H-, and C-pairs are undefined,
while E-pairs introduce no constraints but R- and P -pairs each introduce two.

2.7.1 The Chebyshev-Grübler-Kutzbach (CGK) Formula

Clearly, l unconstrained rigid links have d(l−1) relative DOF, given that one of
the links is designated as a non-moving reference link. Any joint connecting two
neighboring rigid bodies removes at least one relative DOF. If the joint removes
no DOF then the bodies are not connected. If the joint removes 3 DOF in the
plane, or 6 DOF in E3 the two bodies are a rigid structure. Summarizing this
discussion, the DOF of a kinematic chain, relative to one fixed link in the chain,
can be expressed as:

d(l − 1)−
j∑
i=1

µi −m = DOF, (2.13)

where d = dim(G′), l is the number of links including the fixed link, µi is
the number of constraints imposed by the ith joint, j is the number of joints,
and m represents the number of idle DOF of the chain. The idle DOF of a
chain are the number of independent single DOF motions that do not affect the
transmission of motion from the input to the output links of the chain. Consider

Figure 2.34: An RSSR spatial linkage has 1 DOF.

the RSSR linkage shown in Figure 2.34. The coupler is free to spin about its
own longitudinal axis between S1 and S2. The input link drives the linkage by
rotating about axis R1. The output link rotates about axis R2. Clearly, the free
spinning of the coupler does not contribute to the DOF of the chain. Hence,
in this case, m = 1. This is an example in E3 so d = 6. There are four links,
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including the rigid frame to which R1 and R2 are fixed, thus l = 4. Each R-pair
imposes µ = 5 constraints, while each S-pair imposes µ = 3. Thus:

6(4− 1)− (2(5) + 2(3))− 1 =

18− 16− 1 = 1 DOF.

The idle DOF indeed exists, but does not contribute to the DOF of the
RSSR chain. Equation (2.13) is known as the Chebyshev-Grübler-Kutzbach
(CGK) formula. These three kinematicians independently developed it.

2.7.2 Examples

1. Dump Truck Mechanism: (simple closed chain). The lifting mecha-
nism used to manipulate the dumping bed, or hopper, in a typical dump
truck is essentially an RPRR four bar linkage, see Figure 2.35. Immedi-
ately we can write

d = 3, l = 4, µi = 2, j = 4, m = 0,

d(l − 1)−
j∑
i=1

µi −m = 3(4− 1)− 4(2)− 0 = 9− 8 = 1 DOF.

Figure 2.35: Dump-truck linkage is a planar RPRR mechanism.

2. 8-Bar Peaucellier Inversor: (complex closed chain). The Peaucellier
inversor is an 8-bar straight line generating mechanism with one relative
DOF, see Figure 2.36 for example. The conditions that generate its unique
kinematic geometry are that the lengths of each of l3, l4, l5, and l6 are all
equal, while the lengths of l2 and l7 are equal. These conditions create a
symmetry which constrains the joint centres of R1,2, R8,9 and R5 to always
be collinear. Under these conditions the product of the distances between
R1,2 and R8,9 and between R8,9 and R5 is a fixed constant. Moreover, the
curves generated by joint centres R8,9 and R5 can be considered inverses.
This result is made much more clear if another ground fixed revolute joint,
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Figure 2.36: 8-bar Peaucellier inversor, a complex closed chain with 1 DOF.

R10, is added to the mechanism such that the distances between R1,2 and
R10 and between R10 and R8,9 are equal. With this additional constraint
joint centre R8,9 traces a circle while joint centre R5 traces a straight line.
If the distance between R1,2 and R10 is not equal to the distance between
R10 and R8,9 then revolute centre R5 can be made to trace an arbitrarily
large radius arc. Its relative DOF are determined by

d = 3, l = 8, µi = 2, j = 10, m = 0,

d(l − 1)−
j∑
i=1

µi −m = 3(8− 1)− 10(2)− 0 = 21− 20 = 1 DOF.

3. 3R Serial 3D Robot Arm: The robot arm illustrated in Figure 2.37
is a spatial manipulator because the R1 and R2 axes are perpendicular
intersecting lines, while the axes of R2 and R3 are parallel. Manipulators
of this type are typically used for “pick-and-place” assembly operations.
Intuition suggests that the arm should have 3 DOF. Confirming this we
see

d = 6, l = 4, µi = 5, j = 3, m = 0,

d(l − 1)−
j∑
i=1

µi −m = 6(4− 1)− 3(5)− 0 = 18− 15 = 3 DOF.

4. Landing Gear With Over Centre Downlock: The mechanical ad-
vantage of a linkage is the instantaneous ratio of output force, or torque,
to the input force, or torque. This ratio is the negative of the reciprocal of
the input/output angular velocity ratio. In the landing gear illustrated in
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Figure 2.37: 3R serial spatial robot.

Figure 2.38 the input link is the active link l4, driven by a motor spinning
R2. All other links in the chain are passive, and the output link is l2 which
revolves freely about R1. In this case, the mechanical advantage is defined
to be

T1
T2

= −ω2

ω1
. (2.14)

In the configuration shown in Figure 2.38 links 3 and 4 have just passed
through a state of being on the same line. When links 3 and 4 are exactly
aligned the mechanism is said to be in toggle position. In toggle position
ωl4 = 0 and hence ω2 = 0. In this state T2 = 0 and the mechanical
advantage is infinite. But, the landing gear is just beyond toggle position,
and is said to be over centre and locked. To push links 3 and 4 back
through the toggle position requires a near infinite force to be applied to
link l2 via the tire, while an infinitesimal torque applied by the motor at
R2 will break the lock, pushing the linkage back through toggle. For this
linkage, we have

d = 3, l = 5, µi = 2, j = 5, m = 1,

d(l − 1)−
j∑
i=1

µi −m = 3(5− 1)− 5(2)− 1 = 12− 11 = 1 DOF.

5. Planar 3-Legged Platform: Planar 3-legged platforms are used fre-
quently in pick-and-place operations, see Figure 2.39. In this linkage, we
have

d = 3, l = 8, µi = 2, j = 9, m = 0,

d(l − 1)−
j∑
i=1

µi −m = 3(8− 1)− 9(2)− 0 = 21− 18 = 3 DOF.
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Figure 2.38: Landing gear downlock.

Figure 2.39: Planar 3-legged manipulator (complex closed chain).

6. Gough-Stewart Flight Simulator Platform: Gough-Stewart motion
platforms are typically used as the motion bases for flight simulators, see
Figures 2.40a and 2.40b. Hearing the term robotic manipulator usually
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(a) Gough-Stewart schematic. (b) A CAE flight simulator.

Figure 2.40: Gough-Stewart six-legged motion platform.

brings to mind the image of an arm consisting of links coupled by R-
and P -pairs. These open kinematic chains are largely anthropomorphic
in design. Parallel manipulators (i.e., a collection of serial manipulators
connected at one end to the same fixed base and to a common moving link
at the other), on the other hand, are somewhat less intuitive. Nonetheless,
over the last fifty years this area has received substantial research. The
usual paradigm is the Stewart platform type flight simulator designed by
D. Stewart in 1965 [3] with the intention of simulating flight dynamics
to train pilots. Yet earlier still, in 1949 a team in England, led by V.E.
Gough, began the development of a universal rig to study tire wear under
a variety of conditions determined by road surface, suspension, speed,
and the change in the direction of the axis of rotation during cornering
[4]. Because of the remarkable similarity between the two platforms, see
Figure 2.41, this type is now usually called a Gough-Stewart platform,
in recognition of Gough’s earlier development of the six-legged parallel
kinematic architecture.

Enumerating the links, joints, and constraints we obtain

d = 6, l = 14, µPi = 5, µSi = 3, j = 18, m = 6,

d(l − 1)−
j∑
i=1

µi −m = 6(14− 1)− 6(5)− 12(3)− 6 =

78− 30− 36− 6 = 6 DOF.

The six idle degrees of freedom associated with the R-pairs in between
a pair of S-pairs are the free spinning about the longitudinal axis of the
P -pairs. This has led to universal joints, see Figure 2.42, U -pairs, which
is an assembly of two orthogonal intersection revolute axes, being used on
either the base or moving platform in practice instead of S-pairs making
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(a) Gough’s Universal Rig.
(b) Stewart’s original conceptual flight
simulator platform.

Figure 2.41: Origin of the term “Gough-Stewart”.

each leg an UPS chain, which eliminates the idle degrees of freedom.

Figure 2.42: A universal joint, or U -pair.

7. Bench Vice: The bench vice presents some interesting diversion. At first
glance, it is planar, so we immediately set d = 3 without hesitation:

d = 3, l = 3, µi = 2, j = 3, m = 0,

⇒ d(l − 1) =

j∑
i=1

µi −m = 3(3− 1)− 3(2)− 0 = 6− 6 = 0 DOF!!!

A bench vice has 1 DOF! What gives? This seeming anomaly is an artifact
of representation. The R- and H- axes are parallel while the translation
direction of the P -pair is also parallel, see Figures 2.43b and 2.43a.

The P - and R-pairs are kinematically equivalent to a single C-pair. More-
over, the axis of the H-pair is parallel to the axis of the C-pair. Therefore,
the dimension of the motion sub-group represented by the common bench



2.7. COMPUTING DOF USING GROUP CONCEPTS 49

(a) Bench vice. (b) Bench vice schematic.

Figure 2.43: Typical bench vice.

vice is d = 2, not d = 3. Thus:

d = 2, l = 3, µi = 1, j = 3, m = 0,

d(l − 1)−
j∑
i=1

µi −m = 2(3− 1)− 3(1)− 0 = 4− 3 = 1 DOF.

So one must be careful blindly applying the CGK-formula. Still, note
that we had to treat the C-pair as a P -pair and an R-pair separately. Be
warned though that the sub-group dimension argument is controversial.

The geometric model of the CGK-formula is incomplete. Certain geo-
metric mechanism properties are not modeled by it. As a result, there
are many mechanisms with 1 DOF that are not identified by the CGK-
formula. The Bennett 4R Linkage is one of the best known examples,
as shown in Figure 2.44. Opposite links are twisted by the same angle
and have the same length. Twist angles α1 and α2 are proportional to
lengths a1 and a2. Similarly, α3 and α4 are proportional to a3 and a4.
The proportionality is governed by:

a1
sinα1

= ± a2
sinα2

.

Using the CGK-formula we get:

d = 6, l = 4, µi = 5, j = 4, m = 0,

d(l − 1)−
j∑
i=1

µi −m = 6(4− 1)− 4(5)− 0 = 18− 20 = −2 DOF!!!

The CGK-formula predicts a hyper-static-structure, when the Bennett
mechanism actually has 1 DOF. Refining the CGK-formula to model such
geometric conditions is still an open problem.
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Figure 2.44: A Bennett mechanism.

2.8 A Note on the Axes of R-Pairs and P -pairs

The axis of an R-pair is a line through the invariant centre point of rotation
perpendicular to the plane of motion. But it does not make sense, from a
mechanical engineering point of view, to speak about the axis of a P -pair in
the same way, as no real points in E2 are invariant under a translation. P -pairs
permit translations parallel to one direction. One such translation, indicated
by τ , is shown in Figure 2.45. Mathematically, the axis of a P -pair could be
described as the line at infinity, N∞, of all planes normal to the direction of τ .
This is illustrated in Figure 2.45 where Σ is the plane containing the P -pair, τ
is a particular translation effected by the P -pair, N1 and N2 are normal to Σ,
and Ω is the plane at infinity. The two planes Σ and Ω intersect in L∞. Lines
in the direction of τ intersect L∞ in point P1. Lines normal to τ in Σ, indicated
by η, intersect L∞ in P2. The line N∞ is the intersection of all planes normal
to Σ and parallel to η. Moreover, all normals to Σ, N1, and N2 being two of
them, intersect N∞ in the point P3. The join of P2 and P3 is N∞, which is the
axis of the particular prismatic joint. In other words, the axis of a P -pair is the
absolute polar line to the point at infinity of the direction of translation. More
on polar lines when we discuss projective geometry. Regardless, P-pairs would
be impossible to manufacture if they had no longitudinal axis of symmetry to
establish the direction of translation, i.e. no longitudinal centreline. One must
not confuse this centreline with the joint axis, which is, for mechanical reasons,
inaccessible.
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Figure 2.45: P-pair axis.
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