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Planar Kinematic Mapping

• Three parameters, a, b and f describe a planar 

displacement of E with respect to S.

• The coordinates of a point in E can be mapped to 

those of S in terms of a, b and f:

– (x:y:z): homogeneous coordinates of a point in E.

– (X:Y:Z): homogeneous coordinates of the same 

point in S.

– (a,b): Cartesian coordinates of OE in S.

– f: rotation angle from X- to x-axis, positive sense 

CCW.
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Kinematic Mapping

• The mapping takes distinct 

poles to distinct points in a 3-D 

projective image space. It is 

defined by:

• Dividing by X4 normalizes the 

coordinates:
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Kinematic Mapping

• Using half-angle substitutions and these above relations the basic Euclidean 

group of planar displacements can be written in terms of the image points

• The inverse transformation yields

• l and m being non-zero scaling factors arising from the use of homogeneous 

coordinates.
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Constraint Manifold Equation

• Consider the motion of a fixed point in E constrained to move on a 

fixed circle in S, with radius r, centred on the homegeneous 

coordinates (XC : YC : Z) and having the equation

– If K0 = 0, the equation represents a line with line coordinates
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PR-Dyad Line Coordinates

• For PR-dyads the Ki line coordinates are generated by expanding the 

determinant created from the coordinates of a known point on the line, 

and the known direction of the line, both fixed relative to S:
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RP-Dyad Line Coordinates

• For RP-dyads the Ki line coordinates are generated by expanding the 

determinant created from the coordinates of a known point on the line, 

and the known direction of the line, both fixed relative to E:
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Constraint Manifold Equation

• The constraint manifold for a given dyad represents all relative 

displacements of the dyad links when disconnected from the other two 

links in a four-bar mechanism.

• An expression for the image space manifold that corresponds to the 

kinematic constraints emerges when (X : Y : Z), or (x : y : z) from 
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Constraint Manifold Equation

• The result is the general image space constraint manifold 

equation:

• If the kinematic constraint is 

– a fixed point in E bound to a circle (K0=1), or line (K0=0) in S, then 

(x : y : z) are the coordinates of the coupler reference point in E and 

the upper signs apply.

– a fixed point in S bound to a circle (K0=1), or line (K0=0) in E, then 

(X : Y : Z) are substituted for (x : y : z), and the lower signs apply.
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Constraint Manifold Equation

K0 =1: the CS is a skew 

hyperboloid of one sheet 

(RR dyads).

K0 = 0: CS is an hyperbolic

paraboloid (RP and PR dyads).
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Five Position Exact Synthesis

• The five-position Burmester 

problem may be stated as: 

– given five positions of a point on 

a moving rigid body and the 

corresponding five orientations 

of some line on that body, 

design a four-bar mechanism 

whose coupler crank pins are 

located on the moving body and 

is assemblable upon these five 

poses. 

• In this example we assume the dyad types we wish to 

synthesize by setting K0=1, thereby specifying RR-dyads.
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Nature of the Constraint Surfaces

• Burmester theory states that five poses are sufficient for exact 
synthesis of two, or four dyads capable of, when pared, producing a 
motion that takes a rigid body through exactly the five specified poses. 

• This means that five non coplanar points in the image space are 
enough to determine two, or four dyad constraint surfaces that intersect 
in a curve containing the five image points.

• This is interesting, because, in general, nine points are required to 
specify a quadric surface (any function f(x,y,z)=0 is a surface):

• The equation contains ten coefficients; their ratios give nine 
independent constraints whose values determine the equation.

• It turns out that the special nature of the hyperboloid and hyperbolic 
paraboloid constraint surfaces represent four constraints on the quadric 
coefficients; thus five points are sufficient.

.0222  JIzHyGxFxzEyzDxyCzByAx
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Nature of the Constraint Surfaces

• The RR-dyad constraint hyperboloids intersect planes parallel to X3= 0 in circles.

• Thus all constraint hyperboloids contain the image of the imaginary circular 

points, J1 and J2: (1:  i : 0 : 0).

• The points J1 and J2 are on the line of intersection X3= 0 and X4= 0. 

• This real line, l, is the axis of a pencil of planes that contain the complex 

conjugate planes V1 and V2, which are defined by X3  iX4= 0.  

• The RR-dyad hyperboloids all have V1 and V2 as tangent planes, though not at J1

and J2. 

• The PR- and RP-dyad hyperbolic paraboloids contain l as a generator, and 

therefore also contain J1 and J2.

• In addition, V1 and V2 are the tangent planes at J1 and J2.

• Taken together, these conditions impose four constraints on every constraint 

surface for RR-, PR- and RP-dyads.

• Thus, only five non coplanar points are required to specify one of these surfaces.
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Application to the Burmester Problem

• Goal: 

– determine the moving circle points, M1 and M2 of the coupler 

(revolute centres that move on fixed centred, fixed radii circles as 

a reference coordinate system, EE, attached to the coupler moves 

through the given poses).
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The Five Poses

• To convert specified pose variables a, b, and f to image 

space coordinates, we first divide through by X4 to get

• The five poses are specified as (ai, bi, fi), i = 1, ..., 5,

the planar coordinates the 

origin of EE, and orientation

all relative to (0,0,0o) in FF.

• The locations of the origins of 

FF and EE are arbitrary.

   
.1),2/tan(,

2

)2/tan(
,

2

)2/tan(
4321 





 XX

ba
X

ba
X f

ff



©M.J.D. Hayes 

Carleton University, Mechanical and Aerospace Engineering

17

The Five Equations

• We get five simultaneous constraint equations.

• Each represents the constraint surface for a particular dyad.

• This set of equations is expressed in terms of eight variables:

i. X1, X2, X3, X4 = 1, the dehomogenized coupler pose coordinates in the 

image space.

ii. K1, K2, K3, the coefficients of a circle equation (K0 = 1).

iii. x, y, z = 1, coordinates of the moving crank-pin revolute centre, on 

the coupler, which moves on a circle.

• Since X1, X2, X3, are given, we solve the system for the 

remaining five variables 

• K1, K2, K3, x, y.
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Geometric Interpretation

• The Geometric interpretation is:

– five given points in space are common to, at most, four RR-dyad 

hyperboloids of one sheet.

– If two real solutions result, then all 4R mechanism design information 

is available:

i. Each circle centre is at                                              

ii. Circle radii are 

iii. Coupler length is

– In the case of iii, the subscripts refer to two solutions i and j.

– If four real solutions result, the corresponding dyads can be paired in 

six distinct ways, yielding six 4R mechanisms all capable of guiding 

the coupler through the five specified poses.
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Crank Angles

• To construct the mechanism in its five poses, the crank angles 

must be determined.

• Take each (xi, yi, z = 1), and perform the multiplication for 

each with the five pose variables in

• The corresponding sets of (Xi, Yi) are the Cartesian 

coordinates of the moving R-centres expressed in FF, 

implicitly define the crank angles.

• For a practical design branch continuity must be checked.
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Mechanism to Generate Poses
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The Constraint Hyperboloids

The two constraint hyperboloids for the left and right dyads
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Solution
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Integrated Type and Dimensional Synthesis

• Now we try to integrate both type and dimensional

synthesis into one algorithm.

• We shall leave K0 as an unspecified homogenizing 

coordinate and solve the five synthesis equations for K1, K2, 

K3, x, and y in terms of K0.

• In the solution, the coefficients K1, K2, and K3 will depend 

on K0.

• If the constant multiplying K0 is relatively very large, then 

we will set K0 = 0, and define K1, K2, and K3 as line 

coordinates proportional to the Grassmann line coordinates:
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Integrated Type and Dimensional Synthesis

• Otherwise, K0 = 1, and the circle coordinate definitions for 

K1, K2, and K3 are used:
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Example
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Generated Poses

• Convert these pose coordinates 

to image space coordinates 

(X1:X2:X3:1), and substitute into 

the general image space 

constraint manifold equation.

• This yields five polynomial equations in terms of the Ki, x and y.

• Solving for K1, K2, K3, x and y in terms of the homogenizing circle, or 

line coordinate K0 yields:
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Solutions

• At present, heuristics must be used to select an appropriate value for K0 by 
comparing the relative magnitudes of K1 and K2.

• The coefficients for Surfaces 1, 3, and 4 suggest RR-dyads when K0=1.

• The rotation centre for Surface 2 is numerically large : (4.3x106, -2.5x106).

• The crank radius is about 5x106.

• This surface should be recomputed as an hyperbolic paraboloid, revealing 
the corresponding PR-dyad.
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PR-Dyad

• The reference point with fixed point coordinates in E is the rotation centre 

of the R-pair.

• In a PR-dyad, it is clear that this point is constrained to be on the line 

parallel to the direction of translation of the P-pair.

• From the Surface 2 coefficients we have (x,y)=(8.1749x10-7,-1.3214x10-6).

• We could transform these coordinates to S using one of the specified poses 

to obtain the required point coordinates, but they are sufficiently close to 0 

to assume they are the origin of moving reference frame E.

• The angle of the direction of translation of the P-pair relative to the X-axis 

of S is S, and is 
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Dyads
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Dyad Pairings

Solution 1 Solution 2 Solution 3

Solution 4 Solution 5 Solution 6
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Kinematic Mapping

• The mapping takes distinct 

poles to distinct points in a 3-D 

projective image space. It is 

defined by:

• Dividing by X4 normalizes the 

coordinates:
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Kinematic Mapping

• Using half-angle substitutions and these above relations the basic 

Euclidean group of planar displacements can be written in terms of the 

image points

• l being non-zero scaling factors arising from the use of homogeneous 

coordinates.
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Circle and Line Coordinates

• Consider the motion of a fixed point in E constrained to move on a 

fixed circle in S, with radius r, centred on the homegeneous 

coordinates (XC : YC : Z) and having the equation

– If K0 = 0, the equation represents a line with line coordinates
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Constraint Manifold Equation

• The constraint manifold for a given dyad represents all relative 

displacements of the dyad.

• An expression for the image space manifold that corresponds to the 

kinematic constraints emerges when (X : Y : Z) from 
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Constraint Manifold Equation

• The result is the general image space constraint manifold 

equation:
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Constraint Manifold Equation

K0 =1: the CS is a skew 

hyperboloid of one sheet 

(RR dyads).

K0 = 0: CS is an hyperbolic

paraboloid (RP and PR dyads).
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SVD

• Any m x n matrix C can be decomposed into the product

– where U is an orthogonal matrix (UUT=I),

– the uppermost n  n elements of S are a diagonal matrix whose 

elements are the singular values of C,

– V is an orthogonal matrix (VVT=I).

• The singular values, si, of C are related to its eigenvalues, 

li. If C is rectangular CTC is positive semidefinite with 

non-negative eigenvalues:

T
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SVD

• SVD explicitly constructs orthonormal bases for the 

nullspace and range of a matrix.

– The columns of U whose same-numbered elements si are non-zero 

are an orthonormal set of basis vectors spanning the range of C.

– The columns of V whose same-numbered elements si are zero are an 

orthonormal set of basis vectors spanning the nullspace of C.

• If Cmn does not have full column rank then the last             

n-rank(C) columns of V span the nullspace of C.

• Any of these columns, in any linear combination, is a non-

trivial solution to 

0Ck 
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Aside: Line and circle feature extraction

• Not specifying a value for K0 gives a homogeneous linear equation in 

the Ki: 

• It is homogeneous in the projective geometric sense, and 

homogeneous in the linear algebraic sense in that the constant term is 

0:

• Four points in the plane yields the following homogeneous system of 

linear equations:
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Line and circle feature extraction

• In the general case where X has full rank the system has either 

– only the trivial solution, k=0, or

– infinitely many nontrivial solutions in addition to the trivial solution.

• Not very useful for feature identification if k characterizes the feature.

• However, if the points are all on a line or a circle, then X becomes 

rank deficient by 1. 

• In other words, X acquires a nullity of 1: the dimension of the 

nullspace  is 1 and is spanned by a single basis vector.

• Since the singular values are lower bounded by 0 and arranged in 

descending order on the diagonal of S by the SVD algorithm a 

nontrivial solution for k is the same numbered column in V

corresponding to si=0.

• This is true for any Xmx4, where m4, having a nullity of 1.
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Points Falling Exactly on a Circle

• Given 42 points falling exactly on 

the unit circle centred on the origin 

generated by the parametric 

equations

• This gives rank(X42x4)=3

• We have s4=0 and look at the 4th

column of V:





sin

cos

rY

rX










































































































1

0

0
circle

1

0

0

1

22

2

2

13

2

1

0

r

Y

X

rKK

Y

X

K

K

K

K

c

c

c

c



©M.J.D. Hayes 

Carleton University, Mechanical and Aerospace Engineering

44

Points Falling Exactly on a Line

• Given 25 points falling exactly on a 

line through the origin having slope 

m=1, generated by the parametric 

equations

• This gives rank(X25x4)=3

• We have s4=0 and look at the 4th

column of V:
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Points Falling Approximately on a Circle

• Given 42 points falling 

approximately on the unit circle 

centred on the origin generated by 

the parametric equations 

• This gives rank(X42x4)=4 and 

cond(X42x4)=225.2. 

• Still,when we look at V(:,4):
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Points Falling Approximately on a Line

• Given 25 points falling approximately 

on a line through the origin having 

slope m=1, generated by the parametric 

equations

• This gives rank(X25x4)=4 and 

cond(X25x4)=5448.6

• Still,when we look at V(:,4):
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Approximate Mechanism Synthesis

• To exploit the ability of SVD to construct the basis vectors 

spanning the nullspace of the homogeneous system of synthesis 

equations Ck=0, we must rearrange the terms in the general 

constraint surface equation, and for now, restrict ourselves to RR-

and PR-dyads.

• We obtain a constraint equation linear in the surface shape 

parameters K0, K1, K2, K3, and products with x and y:

.0)1(
4

1
)1(

2

1
)1(

2

1

)()1(
4

1
)()1(

4

1

3

2

32321

2

3312313

2

3

0

2

1

2

2321

2

3312

2

3






























K  X K XXXyXxX K XXXyXxX 

KX X yXXXyX   xXXX xX



©M.J.D. Hayes 

Carleton University, Mechanical and Aerospace Engineering

48

Approximate Mechanism Synthesis

• There are 12 terms. The Xi are assembled into the m x 12 

coefficient matrix C.

• The corresponding vector k of shape parameters  is:

• Several of the elements of k have identical coefficients in C:

 is the coefficient of  K0x
2, K0y

2, and K3.

 is the coefficient of  K1x and K2y.

 is the coefficient of  K2x and K1y.
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Approximate Mechanism Synthesis

• The like terms may be combined yielding an m x 8 coefficient 
matrix C whose elements are:

• The corresponding 8 x 1 vector k of shape parameters  is:

• We now have a system of m homogeneous equations in the form
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Approximate Mechanism Synthesis

• We obtain the following correspondence between rank(C), the mechanical 
constraints, and the order of the coupler curve:

• In general, rank(C) = 8, with OE on neither a line or circle.

• Practical application of the approach will require fitting constraint surfaces 
to their approximate curve of intersection, which means rank(C) = 8.

• We will have to approximate C by matrices of lower rank.

• To start we will investigate Eckart-Young-Mirsky theory.

2dyads-PR two5

4dyad-RR one PR-, one6

6dyads-RR two6

??motionplanar  general8

order curvecoupler constraint)(rank C
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Example

• An exploratory experiment was devised.

• A PRRR mechanism was used to generate a 

set of 20 coupler positions and orientations 

using the origin of E, given by the 

coordinates (a,b), as the coupler point, and 

taking its orientation  to be that of the 

coupler.

• The positions range from (2,1) to (3,2), and 

the orientations from -5° to -90º.

• The range of motion of the PR- and RR-

dyads map to a hyperbolic paraboloid and 

hyperboloid of one sheet, respectively.

• These quadrics intersect in a spatial quartic, 
such that rank(C) = 6.
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Example

• When the rank of a 20 x 8 matrix is deficient by 2, then 2 
columns are linear combinations of the remaining 6.

• The column vectors V(:,6) and V(:,7) in the SVD of C span its 
nullspace. 

• Any linear combination V(:,6) + lV(:,7) is a solution.

• But, we can regard this in a different way.

• We can combine these columns of C and corresponding 
elements of k.

• The rank of C is invariant under this process.

• We obtain two different 20 x 7 coefficient matrices possessing 
rank = 6.

• The resulting two nullspace vectors represent the generating 
PR-, and RR-dyads, exactly.
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PR-Dyad Synthesis

• To extract the PR-dyad we set K0=0.

• Recall 

• In the system Ck = 0 we can add columns 4 and 5 of C

because K0=0.

• The resulting 20 x 7 matrix C possesses rank 6.

• The 7th column of the V matrix that results from the SVD 
of C yields k that exactly represents the constraint surface 

for the generating PR-dyad.
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RR-Dyad Synthesis

• To extract the RR-dyad we add columns 2 and 3 of C.

• This can be done when (X1-X2X3)/(X1X3+X2) has the same scalar value for 

every, X1, X2, and X3 in the pose data.

• The scalar is the ratio K1/K2 of the PR-dyad parameters.

• This happens only when PR-dyad design parameters contain

• In this case the hyperbolic paraboloid has the equation 

• The curve of intersection with any RR-dyad constraint hyperboloid will be 

symmetric functions of X3 in X1 and X2.

• An image space curve with rank(C) = 6 but PR-dyad design parameters 

can always be transformed to one symmetric in X1 and X2. 
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Results
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Conclusions and Future Work

• We have presented preliminary results that will be used in the 

development of an algorithm combining type and dimensional synthesis 

of planar mechanisms for n-pose rigid body guidance. 

• This approach stands to offer the designer all possible linkages that can 

attain the desired poses, not just 4R's and not just slider-cranks, but all 

four-bar linkages.

• The results are preliminary, and not without unresolved conceptual issues.

– Cope with noise: random noise greater than 0.01% is problematic.

– Establish how to proceed with 4R mechanisms. 

– For the general approximate case with rank(C) = 8, determine how to 

approximate C with lower rank matrices. 

– Establish optimization criteria.

– Investigate meaningful metrics in the kinematic mapping image space.
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Five Position Exact Synthesis

• The five-position Burmester 

problem may be stated as: 

– given five positions of a point 

on a moving rigid body and 

the corresponding five 

orientations of some line on 

that body, design a four-bar 

mechanism that can move the 

rigid body exactly through 

these five poses. 

• In general, exact dimensional synthesis for rigid body guidance assumes 

a mechanism type (4R, slider-crank, elliptical trammel, et c.).

• Our aim is to develop an algorithm that integrates both type and 

approximate dimensional synthesis for n > 5 poses.



Type Synthesis

• For planar mechanisms, 

two types of mechanism 

constraints: 

– Prismatic (P);

– Revolute (R).

• When paired together, 

there are four possible 

dyad types.
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Dyad Constraints

• Dyads are connected 
through the coupler link at 
points M1 and M2.

– RR – a fixed point in E
forced to move on a fixed 
circle in S.

– PR – a fixed point in E
forced to move on a fixed 
line in S.

– RP – a fixed line in E forced 
to move on a fixed point in S.

– PP – a fixed line in E forced 
to move in the direction of a 
fixed line in S.

60©T.J. Luu and M.J.D. Hayes Mechanical & Aerospace 
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Kinematic Constraints

• Three parameters, a, b and q describe a planar 

displacement of E with respect to S.

• The coordinates of a point in E can be mapped to 

those of S in terms of a, b and q:

– (x:y:z): homogeneous coordinates of a point in E.

– (X:Y:Z): homogeneous coordinates of the same 

point in S.

– (a,b): Cartesian coordinates of OE in S.

– q: rotation angle from X- to x-axis, positive sense 
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Circle and Line Coordinates

• Consider the motion of a fixed point in E constrained to move on a 

fixed circle in S, with radius r, centred on the homegeneous coordinates 

(XC : YC : Z) and having the equation

– If K0 = 0, the equation represents a line with line coordinates
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Circle / Line Equation:

Line CoordinatesCircle Coordinates
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K0 acts as a binary

switch between circle 

and line coordinates 

Ignoring infinitely 

distant coupler 

attachment points set

Z = z = 1



Reference Frame Correlation
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• Prescribing n > 5 poses makes C an n x 4 matrix.

• a, b, and θ are the specified poses of E described in S.
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Approximate Synthesis for n Points

For n poses:

• The only two unknowns in C are the coordinates x and 

y of the coupler attachment points expressed in E.

• For non-trivial k to exist satisfying Ck=0, then C must 

be rank deficient.

• The task is to find values for x and y that render C the 

most ill-conditioned. 65©T.J. Luu and M.J.D. Hayes Mechanical & Aerospace 
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Matrix Conditioning

 



 1,

MIN

MAX

10,
1

 




The condition number of a matrix is defined to be:

A more convenient representation is:

 is bounded both from above and below.

Choose x and y in matrix C such that  is minimized.



Nelder-Mead Multidimensional Simplex

• Any optimization method may be used and the numerical 

efficiency of the synthesis algorithm will depend on the method 

employed.

• We have selected the Nelder-Mead Downhill Simplex Method in 

Multidimensions.

• Nelder-Mead only requires function evaluations, not derivatives.

• It is relatively inefficient in terms of the required evaluations, 

but for this problem the computational burden is small.

• Convergence properties are irrelevant since any optimization 

may be used in the synthesis algorithm. 

• The output of the minimization are the values of x and y that 

minimize the  of C.
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Nelder-Mead Multidimensional Simplex

• The Nelder-Mead algorithm requires an initial guess for x and y.

• We plot  in terms of x and y in the area of (x,y) = (0,0) up to the 

maximum distance the coupler attachments are permitted to be 

relative to moving coupler frame E. 

• Within the corresponding parameter space, the approximate 

local minima are located.

• The two pairs of (x,y) corresponding to the approximate local 

minimum values of  are used as initial guesses.

• The Nelder-Mead algorithm converges to the pair of (x,y) 

coupler attachment point locations that minimize  within the 

region of interest.
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 Plot
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 Plot



©M.J.D. Hayes

Mechanical & Aerospace Engineering, Carleton University

71

 Plot
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Nelder-Mead Minimization

• Once approximate minima are found 

graphically, they are input as initial guesses 

into the Nelder-Mead polytope algorithm

• The output of the minimization is the value of 

x and y that minimize the  of C
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Singular Value Decomposition

T

nnnmmmnm   VSUC

Any m x n matrix can be decomposed into:

where:

• U spans the range of C

• V spans the nullspace of C

• S contains the singular values of C

For C ill-conditioned ( minimized):

• The last singular value in S is approximately zero

• The last column of V is the approximate solution to CK = 0

The last column of V is then the solution to vector K, defining a circle or line
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Circle or Line?

• In the most general 
case, the vector K
defines a circle, 
corresponding to an RR 
dyad

• If the determined circle 
has dimensions several 
orders of magnitude 
greater than the range of 
the poses, the geometry 
is recalculated as a line, 
corresponding to a PR 
dyad A PR dyad, analogous to an RR 

dyad with infinite link length and 

centered at infinity
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Special Cases: The RP Dyad

• RP dyads are the kinematic inverses of PR dyads

• To solve:

– switch the roles of fixed frame S and moving 
frame E

– Express points x and y in terms of X, Y, and q

– Solve for constant coordinates (X,Y) that minimize 
 of C
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Special Cases: The PP Dyad

PP dyads:

• can only produce rectilinear motion at a 

constant orientation

• can produce any rectilinear motion at constant 

orientation

• are designed based on the practical constraints 

of the application
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Examples: The McCarthy Design Challenge

• Issued at the ASME 
DETC Conference in 
2002

• No information given 
on the mechanism used 
to the generate poses

• 11 poses: 
overconstrained 
problem
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Manufacture Synthesis Matrix

• Substitute pose information into

• Plot  in terms of x and y
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 Plot
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 Plot
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 Plot
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Extracting Mechanism Parameters

• Minima found graphically at approximately 

(1.5, 0.6), and (1.4, -2.0)

• Using these values as input, Nelder-Mead 

minimization finds the minima at 

(1.5656, -0.0583) and (1.4371, -1.9415)

• Singular value decomposition is used to find 

the K vector corresponding to these 

coordinates
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Results

Dyad 1 Dyad 2

x 1.5656 1.4371

y -0.0583 -1.9415

K0 1.0000 1.0000

K1 -0.7860 -2.2153

K2 -0.3826 -1.6159

K3 -2.2390 4.5236
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The Solution
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Examples: The Square Corner

Exact synthesis is 
impossible for 
planar four-bar:

• A PPPP mechanism 
can replicate the 
positions, but not the 
orientations

• The coupler curve of 
a planar four-bar is 
at most 6, while a 
square corner 
requires infinite 
order

• Motion from (0,1) to (1,1) to (1,0)

• Orientation decreases linearly 

from 90 to 0 degrees
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Manufacture Synthesis Matrix

• Substitute pose information into

• Plot  in terms of x and y
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 Plot
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 Plot
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 Plot
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Extracting Mechanism Parameters

• Minima found graphically at approximately 
(0.8,0.6), and (0.8,-0.6)

• Using these values as input, Nelder-Mead 
minimization finds the minima at 

(0.8413,0.5706) and (0.8413,-0.5706)

• Singular value decomposition is used to find 
the K vector corresponding to these 
coordinates
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Results

Dyad 1 Dyad 2

x 0.8413 0.8413

y 0.5706 -0.5706

K0 1.0000 1.0000

K1 -4.5843 1.0539

K2 1.0539 -4.5843

K3 1.2704 1.2704
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The Solution
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Conclusions

• This method determines type and dimensions 

of mechanisms that best approximate n > 5 

poses in a least squares sense

• No initial guess is necessary

• Examples illustrate utility and robustness
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Fitting Image Space Points (Displacements)  

to Constraint Surfaces

• Given a suitably over constrained set of image space 

coordinates X1, X2, X3, and X4 which represent the desired set 

of positions and orientations of the coupler identify the 

constraint surface shape coefficients: K0, K1, K2, K3, x, and y.

• The given image space points are on some space curve.

• Project these points onto the best 4th order curve of intersection 

of two quadric constraint surfaces.

• These intersecting surfaces represent two dyads in a 

mechanism that possesses displacement characteristics closest 

to the set of specified poses. 
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Identifying the Constraint Surfaces

• Surface type is embedded in in the coefficients of its 

implicit equation: 

• It can be classified according to certain invariants of its 

discriminant and quadratic forms:
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Identifying the Constraint Surfaces

• Given a sufficiently large number n of poses expressed as 

image space coordinates yields n equations linear in the ci

coefficients 

• The n equations can be re-expressed as:

• The same numbered elements in Matrix A, corresponding 

to the Xi are scaled by the unknown ci.
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Identifying the Constraint Surfaces

• Applying SVD to Matrix A reveals the vectors c that are 

in, or computationally close, in a least-squares sense, to the 

nullspace of A.

• Certain invariants of the resulting discriminant and 

corresponding quadratic form reveal the nature of the 

quadric surface.

• RR dyads require the quadric surface to be an hyperboloid 

of one sheet with certain properties.

• RP and PR dyads require the quadric surface to be an 

hyperbolic paraboloid.
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Equivalent Minimization Problem

• Assuming the mechanism type has been identified given 

n>>5 specified poses, the approximate synthesis problem 

can be solved using an equivalent unconstrained non-linear 

minimization problem.

• It can be stated as “find the surface shape parameters that 

minimize the total spacing between all points on the 

specified reference curve and the same number of points 

on a dyad constraint surface”.

• First the constraint surfaces are projected into the space 

corresponding to the hyperplane X4=1.

• This yields the following parameterizations:
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Equivalent Minimization Problem

• Hyperboloid of one sheet:

x and y are the coordinates of the moving revolute centre expressed 

in the moving coordinate system E,

K1 and K2 are the coordinates of the fixed revolute centre expressed 

in the fixed coordinate system Σ,

r is the distance between fixed and moving revolute centres, 

while t and γ are free parameters.
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Equivalent Minimization Problem

• Hyperbolic paraboloid:

f(t), g(t), a(t), and b(t) are functions of the surface shape 

parameters and the free parameter t, 

while s is another free parameter.

• Note that in both cases the X3 coordinate varies linearly with 

the free parameter t, and can be considered another free 

parameter.
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Equivalent Minimization Problem

• The total distance between the specified reference image 

space points on the reference curve and corresponding points 

that lie on a constraint surface where t=X3=X3ref
is defined as

• The two sets of surface shape parameters that minimize d

represent the two best constraint surfaces that intersect 

closest to the reference curve.

• The distance between each reference point and each 

corresponding point on the quadric surface in the hyperplane 

t=X3=X3ref 
can measured in the plane spanned by X1 and X2.
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Example

• A planar 4R linkage was 

used to generate 40 poses 

of the coupler.

• The resulting image space 

points lie on the curve of 

intersection of two 

hyperboloids of one 

sheet.

• The reference curve can 

be visualized in the 

hyperplane X4=1.
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Example

• In order for the algorithm to converge to the solution that 

minimizes d, decent initial guesses for the surface shape 

parameters are required.

• Out of the 40 reference points, sets of five were arbitrarily 

chosen spaced relatively wide apart yielding sets of five 

equations in the five unknown shape parameters.

• Solving yields the initial guesses.

• Non-linear unconstrained algorithms such as the Nelder-

Mead simplex and the Hookes-Jeeves methods were used 

with similar outcomes. 
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Results Generated From Initial Guesses

©M.J.D. Hayes                                                                                                      

Mechanical & Aerospace Engineering, Carleton University

105

Parameter Guess 1 Guess 2 Guess 3 Guess 4 Guess 5 Guess 6 Guess 7

K1 -97.720 -18.202 888.914 -5.000 1.000 -25.445 -1.398

K2 -57.463 -12.363 432.395 0.000 -1.000 -17.073 -6.191

K3 1491.757 261.650 -2374.375 21.000 -23.000 390.531 36.554

x -1.133 -1.287 -0.894 3.000 -1.000 -1.309 -4.388

y 0.534 0.889 -5.375 -2.000 -2.000 1.030 -2.361

Iterations 450 623 718 101 176 745 436

d 1.1132 1.9333 6.726 0.0004 0.0010 1.5746 4.8138



Results: Initial Guess 3
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Results: Initial Guess 4
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Results: Initial Guess 5
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Intersection of Two Best Surfaces
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Results: Initial Guess 1
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Results: Initial Guess 2

©M.J.D. Hayes                                                                                                      

Mechanical & Aerospace Engineering, Carleton University

111



Results: Initial Guess 3
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Results: Initial Guess 4
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Results: Initial Guess 5
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Results: Initial Guess 6
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Results: Initial Guess 7
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Conclusions

• A new approximate synthesis algorithm was developed 

minimizing the total deviation, d,  from specified poses 

represented as points in the kinematic mapping image space.

• No heuristics are necessary and only five variables are needed.

• The algorithm returns a list of best generating mechanisms ranked 

according to d.  

• The minimization could be further developed to jump from local 

minima to other local minima depending on desired “closeness” 

to specified poses.

• Relationships between the surface shape parameters may be 

exploited so the algorithm recognizes undesirable solutions and 

avoids iterations in those directions.   
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Applications to Analysis

• Kinematic mapping can also be used effectively for the 

analysis of complex kinematic chains. 

• A very common example is a planar three-legged 

manipulator.

• A moving rigid planar platform connected to a fixed rigid 

base by three open kinematic chains. Each chain is 

connected by 3 independent 1 DOF joints, one of which is 

active.
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General Planar Three-Legged Platforms

• 3 arbitrary points in a particular 

plane, described by frame E, 

that can have constrained 

motion relative to 3 arbitrary 

points in another parallel plane, 

described by frame S.

• Each platform point keeps a 

certain distance from the 

corresponding base point. These 

distances are set by the variable 

joint parameter and the topology 

of the kinematic chain.
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Characteristic Chains

• The possible combinations of R

and P pairs of 3 joints starting 

from the fixed base are:

• The PPP chain is excluded since 

no combination of translations 

can cause a rotation.

• 7 possible topologies each 

characterized by one simple 

chain.

RRR, RPR, RRP, RPP, PRR, 

PPR, PRP, PPP
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Passive Sub-Chains

• There are 21 possible joint actuation schemes, as any of the 3 joints in 

any of the 7 characteristic chains may be active.

• When the active joint input is set, the remaining passive sub-chain is 

one of the following 3:

RR, PR, RP

• The PP-type sub-chains are disregarded because platforms containing 

such sub-chains are more likely to be architecture singular.

• Thus, the number of different three-legged platforms is  

• The direct kinematic analysis of all 1140 types is possible with this 

method.
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Kinematic Constraints

• RR-type legs: hyperboloid

– One of the passive R-pairs has fixed 

position in S. The other, with fixed 

position in E, moves on a circle of fixed 

radius centred on the stationary R-pair.

• PR-type legs: hyperbolic paraboloid

– The passive R-pair, with fixed position in 

E, is constrained to move on a line with 

fixed line coordinates in S.

• RP-type legs: hyperbolic paraboloid

– The passive P-pair, with fixed position in 

E, is constrained to move on a point with 

fixed point coordinates in S. These are 

kinematic inversions, or projective duals, 

of the PR-type platforms.
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The Direct Kinematic Problem

• The direct kinematic position analysis of any planar three-

legged platform jointed with lower-pairs reduces to 

evaluating the points common to three quadric surfaces.
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Workspace Visualization: Three RPR-Type Legs
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Three PPR-Type Legs

Cartesian layer f = 150o

Image space layer f = 150o
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Mixed Leg (RPR, RPR, RPR) Platform

• This particular platform consists of 

one each of RR-type, RP-type and 

PR-type legs.

• The constraint surfaces for given 

leg inputs define the 3 constraint 

surfaces. 

• The surfaces reveal 2 real and a pair 

of complex conjugate FK solutions.

• The RPR and RPR constraint 

surfaces have a common generator.
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Mixed Leg Platform Workspace

• RR-type legs result in families of 

hyperboloids of one sheet all sharing 

the same axis.

• PR- and RP-type legs in general 

result in families of hyperbolic 

paraboloids.

• These families are pencils:

– If the active joint is a P-pair the 

hyperbolic paraboloids in one family 

share a generator on the plane at 

infinity.

– If the active joint is an R-pair the 

hyperbolic paraboloids in one family 

share a finite generator.


