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The field of computational design synthesis has been an active area of research for almost
half a century. Research advances in this field have increased the sophistication and

complexity of the designs that can be synthesized, and advances in the speed and power
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of computers have increased the efficiency with which those designs can be generated.
Some of the results of this research have begun to be used in industrial practice, yet many

open issues and research challenges remain. This paper provides a model of the auto-
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mated synthesis process as a context to discuss research in the area. The varied works of
the authors are discussed as representative of the breadth of methods and results that
exist under the field of computational design synthesis. Furthermore, some guidelines are

presented to help researchers and designers find approaches to solving their particular
design problems using computational design synthesis. [DOI: 10.1115/1.2013289]

1 Introduction

Possibly the first design synthesis programs written, which
were used in industrial practice as well, were a set of expert sys-
tems from Westinghouse written in the 1950s that designed elec-
tric motors, generators, and transformers. It is known to the world
only because Herb Simon spoke of it when talking about the his-
tory of Artificial Intelligence [1]. But, arguably, it was Simon’s
1969 paper, “The Science of Design,” published in his book The
Sciences of the Artificial [2], that provided a foundation for the
academic pursuit of automated engineering synthesis methods.
Ten years after that paper was written, the Computers in Engineer-
ing division of ASME was founded and, now 35 years later, we
see a strong base of research in the field and the beginnings of the
transfer of this work into industrial practice. Some early work on
automated synthesis that followed the arguments from Simon in-
cluded the DOMINIC system [3], a heuristic-based iterative opti-
mizing design process method, and PRIDE [4], an expert system
for the design of paper handling paths.

This paper is not a literature review, since the body of work in
the area of computational engineering synthesis is vast. This paper
is, however, a look at a model for design synthesis automation, a
foundation of the field, and an illustration of its effectiveness by
mapping our own work onto the model. For those seeking a de-
tailed exploration and literature review into areas and projects in
this field, Formal Engineering Design Synthesis [5] and Engineer-
ing Design Synthesis [6] present in-depth investigations into the
state-of-the-art of the field.

By formal synthesis we mean the algorithmic creation of de-
signs; the organized, methodological modeling, implementation
and execution of design creation on a computer. The goal is to
leverage computational speed and depth of calculation to reduce
the tedium for human designers and augment the process of
searching the space of alternatives for a preferred solution. Syn-
thesis as a method contrasts with traditional optimization in that
the goal of synthesis is to more broadly capture, emulate, and/or
utilize design decisions made by human designers to create. Ide-
ally, computational design synthesis is invoked in situations in
which the human designers are often at a loss of what avenues to

]Corresponding author.

Contributed by the Engineering Simulation and Visualization Committee for pub-
lication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING.
Manuscript received April 25, 2005; revised manuscript received July 8, 2005. As-
sociate Editor: J. Shah.

Journal of Computing and Information Science in Engineering

pursue, or the best method of achieving a solution requires the
generation and evaluation of countless alternatives.

The current supply of synthesis research is mostly produced in
academia, yet in only a few cases have these met the demand of
industrial design problems. The reason is that the problem is chal-
lenging, a complex balance between representation, generation,
and search of a design space in pursuit of original design solu-
tions. This paper presents the various aspects of computational
design synthesis, in a formal model to elucidate the gap between
this supply and demand.

Thus, a generic model of computational design synthesis is pre-
sented in which the method is divided into four major activities:
representation, generation, evaluation, and guidance [7,8]. Any
implemented system that automatically designs must include
some semblance of these four steps. In a way, these activities are
similar to some important activities that humans follow in their
design process: creation of a mental model of the object (repre-
sentation), creation of the parts and the whole (generation), analy-
sis of how well it meets the design goals and constraints (evalu-
ation), and feedback on improvements to the design for the next
iteration (guidance).

In the following sections, we develop these four aspects of the
synthesis process. They provide a framework for presenting re-
search in this area, a framework for tackling new research prob-
lems in design synthesis and an approach to teaching the field to
students. After discussing each area, we highlight a few research
projects in the area based on the authors’ work, some of which are
moving into commercial application, and then discuss challenges
to the research community that need to be tackled as the field
further progresses.

2 The Foundations of Synthesis

Figure 1 presents a flowchart that highlights the division of
tasks into four main steps: representation, generation, evaluation,
and guidance. In this section, we discuss this simple flowchart and
show that it is a generalization of numerous computational design
synthesis methods.

Setting up a problem initially involves declaring constraints and
constructing objective functions or design goals. At the top of the
flowchart in Fig. 1, the design problem is formulated. The act of
formulating or initializing a synthesis process has not received
much attention in the literature, since most computational synthe-
sis methods are developed to solve a particular design problem.
Currently, there is motivation to generalize methods to handle a
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Fig. 1 The generic flowchart for the synthesis of open-ended
engineering design problems

broad array of design problems since most computational synthe-
sis methods require a user who is knowledgeable about the intri-
cacies of the algorithm. Just as finite-element analysis has boomed
since more accessible pre- and postprocessing have been devel-
oped, synthesis methods may follow a similar course. Indeed, re-
cent development in optimization software packages, such as En-
gineous’s iSight [9] and Multistat’s Visual Optimizer [10] have
added robustness and improved user interfaces in order to stream-
line the preprocessing and postprocessing of data so a wider range
of engineers can easily apply optimization. While computational
synthesis addresses more ambitious problems than traditional op-
timization, their popularity in both industry and academia would
likely increase with well defined if not generic user-interfaces.

The representation is formulated by the developer of the com-
putational design method to capture the forms or attributes of the
design space. For example, in genetic algorithms, the representa-
tion is usually a bit-string that represents the key decision vari-
ables in the process. Candidate solutions are generated using this
representation, in the generation task. In genetic algorithms, gen-
eration is done by mutating and crossing over existing or parent
candidates. Each generated candidate is evaluated in the evalua-
tion task to determine how well it meets the objectives and con-
straints of the design problem. Based on the objectives calculated
for the candidates a guidance or feedback strategy is implemented
to inform the search process to find better solutions in the subse-
quent iterations. In genetic algorithms, this is the “survival of the
fittest” tournament selection where candidates with inferior fitness
values are removed from the search process.

Most synthesis methods assume an ordered structure to the de-
sign space, whereby each instance within the space is a solution to
a common design problem; this instance may be a fully realized
design or a more abstract representation. Within such spaces, in-
stances can be organized such that solutions with similar configu-
rations are in close proximity. The principle for this visualization
is that designs that require little modification to transform them
from one state to another are closer to each other than designs that
require larger modification. Therefore, to move about this space of
solutions, one makes transformations to designs to arrive at neigh-
boring solutions. Through numerous modifications, one can visit a
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wide variety of possible configurations. Because the space is in-
finite and includes past, present, and future design states, this
searching through the space becomes analogous to creating, de-
signing, or inventing in design problems. If this space is describ-
able to a computational system, then the challenge is to effectively
find in this set the solution that best meets the demands of the
design problem.

2.1 Representation. The representation defines the level of
detail and focus of the computational search process as well as
dictating the range of candidates that can be created. The repre-
sentation helps determine the appropriate generation or search
mechanism and, similarly, the generation mechanism determines
the appropriate representation. One could argue that representa-
tion is the key challenge in synthesis. Unlike analysis where one
uses computational power to find important performance param-
eters, synthesis creates the details of an engineering model in
which the simplicity or complexity within the range of candidate
solutions is left to the designer’s discretion. In observing the in-
teractions of human designers, one can readily note the ease with
which humans are able to develop and compare models of various
complexities. Providing this ability to computational systems re-
quires new approaches. Furthermore, this variability and open-
endedness in representation makes research in computational syn-
thesis methods more than simply applying optimization or
heuristic search methods. In the following sections, we discuss
several representation schemes.

Design is often viewed as a transformation from function to
form, while the process of synthesis is the creation of a form that
meets functional requirements. Most of this paper is devoted to
various approaches to computational methods of synthesizing a
design from requirements; however, we begin with a brief over-
view of the representation of function and form.

2.1.1 Function. During the early conceptual stages of design,
many design methodologies require the designer to construct
functional graphs of the to-be-designed artifact, for example, the
function structures of Pahl and Beitz [11]. The function structures
formalism represents functions in a block-diagram of energy, ma-
terial, and information flows; that is the transformation of input to
output flows. Block diagrams are useful for designers creating
such structures by hand; however, advances in symbolic compu-
tation have facilitated symbolic representation of functions. Stone
and Wood [12] have developed an extensive language of function
to be used within function structures.

An example of a systems engineering approach to function
modeling is the bond graph formalism [13,14]. The bond graph
formalism represents a dynamic system as a composition of com-
ponents, such as transformers, sources, and gyrators. Each com-
ponent deals with power flow and has effort parameters (such as
pressure, voltage, and force) and flow parameters (such as flow
rate, current, and velocity) at its ports. This technique is an exten-
sion of generalized circuit theory and can deal with a variety of
dynamic systems, including electric circuits, mechanical systems,
and hydrodynamic systems. Bond graphs are a subset of the func-
tion definition of Pahl and Beitz, because they deal only with
power transformation. Based on the bond graph formalism,
Bracewell and Sharpe proposed a practical design platform called
Schemebuilder [15].

While the transformational view of function does not require a
concrete component or device to perform each transformation
function, the qualitative physics community (e.g., de Kleer [16])
has developed Model-Based Reasoning (MBR) technologies
based on transformation formalisms. MBR technology reasons
about a device’s behavior (that is, what a device does) from ex-
plicitly represented models of the device’s component to the sys-
tem’s behavior and then eventually to function. Functional reason-
ing adds functional concepts into model-based reasoning
technology. In contrast to MBR, functional reasoning deals with
“what the device is for.” Within qualitative physics, a number of
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interesting techniques for synthesis have been developed, al-
though, at least initially, their application domains have been lim-
ited to analytical tasks such as fault diagnosis and explanation.
Synthesis based on functional reasoning focuses on creating a
model of a design object. Examples of these efforts include the
Causal Functional Representation Language, a formal representa-
tion scheme for the physical behaviors of a system [17]; the
Structure-Behavior-Function (SBF) model, a system that repre-
sents function and has a design-case memory that represents each
case as an SBF model for analogy-based design [18]; and the
Function-Behavior-State (FBS) model and its computer-based
implementation called the FBS modeler [19-21]. Within the FBS
modeling, a function is an association between the designer’s in-
tention and a physical behavior of components that realizes the
function and is represented in a “to do something” form. This
formalization of function is more flexible than the transforma-
tional definition of function and allows definitions of function
such as “to fix components.” FBS has also been applied to more
domains. The FBS Modeler has knowledge bases for function
prototypes and physical phenomena based on Qualitative Process
Theory [22]. The core of the FBS Modeler to support conceptual
design synthesis is Qualitative Process Abduction System (QPAS)
that performs the core of synthesis to derive structural informa-
tion, behavioral, and functional descriptions [23].

2.1.2  Form. Most synthesis techniques include representations
of the final form of the design object. The representation of form
is both domain and solution technique specific. For example, one
final representation of form might be simply topology nodes with
no geometric detail [24], while another might be a complete speci-
fication of the geometry and material [25]. The scope of final
representations is too broad to cover in this paper. Where appro-
priate, the representation of the final design object is covered
within the description of the synthesis technique. The interaction
between the function and geometric form of a design is a signifi-
cant challenge to a computational synthesis system.

2.1.3 Vector-Based Optimization. Many engineering design
problems have benefited from the application of optimization al-
gorithms. Traditionally used after conceptual design has refined a
design to a specific topology, optimization then provides an ideal
way to determine what the sizes or parameters of various compo-
nents should be. However, the synthesis process is not just about
determining parameter values, but also about determining the to-
pological structure itself. The selection of the variables and even
the objective function and constraints can become dynamic,
changing throughout the process.

When the mathematical formulation of the problem is noncon-
vex, discontinuous, or multimodal, or when the problem formula-
tion is dynamic, nontraditional optimization methods are needed
that can handle these situations. These typically include stochastic
effects found in optimization methods like simulated annealing
[40], genetic algorithms [43], and tabu search [53]. Thus, the en-
coding of a rich representation can often be accomplished through
a fixed set of variables. As the structure of the design moves
further from its encoding, the less successtul the optimization is in
finding optimal designs. The goal of a synthesis system at the
topology level is to determine what the variables are, in other
words, what the topology is.

2.1.4  Graph Structures. Graph structures are frequently used
to represent the design space and the design solutions. A graph is
a collection of nodes interconnected by arcs, which may also in-
clude parameters within the node and arc objects that are impor-
tant to the design problem. Graphs can represent many different
types of engineering systems such as electrical circuits [26], road-
ways [27], and chemical plants [28]. Approaches to constructing
optimal graphs include starting with a single node and building up
to a full design or starting with a complete graph and removing
elements until an optimal structure is reached.

Journal of Computing and Information Science in Engineering

2.1.5 Shape and Graph Grammars. Another representation
method is to store only the transitions or production rules for
creating a solution, as opposed to storing the solutions themselves.
These production, or grammar, rules can be based on shape (as is
done in shape grammar formulation [29]) or on function [30-32].
Graph grammars are another approach in which the grammar de-
scribes the language of the structure of the topology, possibly at a
more abstract level [33]. Such representations can produce a wider
variety of candidates since solutions need not have common char-
acteristics, but merely a common starting point. Furthermore, the
rules may be developed to include important but elusive hard
constraints that define the space of solutions without eliminating
the variety of design possibilities.

Shape grammars have been extensively used in architecture
[34-37] and engineering (see [38] for a review). In shape gram-
mars the production of geometry or shape has three important
characteristics: (1) the rules act directly on the geometry, (2) the
shapes are parametric, and (3) emergent shapes can be recognized,
supporting the possibility of creativity in the synthesis process.

2.2 Generation. Generation methods can be as naive as a
random number generator or as sophisticated as collaborative
agents simulating human thought as a design evolves. The genera-
tion process may occur in one iteration or, more likely, over many.
Given the challenging task of implementing a process to emulate
human creativity or even to reason about sophisticated design
configurations, one might tend to prefer naive generate and test
methods over knowledge-based methods, particularly given the
speed of modern computers. However, if evaluation methods are
expensive, one might opt for a generation method somewhere
between naive and knowledge-based. Below, we discuss a few of
these approaches.

2.2.1 Optimization. Many generation methods use optimization
techniques, which range from sequential quadratic programming
[39] with its analytical approach to finding new search directions
to simulated annealing [40] which uses random perturbations.

Many traditional optimization methods are based on a twofold
generation approach, first identifying a productive search direc-
tion, and then performing a one-dimensional search along that
direction to identify a summit. From this summit, the process
again identifies the best local search direction and proceeds. Such
approaches are deterministic and efficient on smooth uni-modal
spaces; they are also useful when achieving a local optimum is all
that is required.

Direct search methods do not require gradients [41,42]. These
approaches leap to neighboring states along directions that appear
productive in terms of recently visited states. Direct search meth-
ods often generate new candidates deterministically as do
gradient-based methods. However introducing some randomness
in finding neighboring solutions prevents becoming trapped in lo-
cal neighborhood. Simulated annealing along genetic algorithms
[43,44], for example, use direct search in that they do not require
gradient information, but depend on stochastic movements to
avoid local optima using little domain or search knowledge in the
process.

2.2.2  Search Trees. One view of design is that it is a sequence
of decisions in which each subsequent decision depends on previ-
ous decisions. This sequence can be represented as a search tree as
shown in Fig. 2, in which each node is an incomplete solution that
must undergo further development until a final design is created.
The phrase “back to the drawing board” evokes this process of
moving back up the tree to earlier design decisions in order to
progress toward a final design by making different decisions.
Backtracking often involves repairing prior solutions because con-
straints and variables often change as the design process
progresses.

Various tree traversal methods such as depth-first search or A”
are useful in navigating the tree. However, one may not be able to
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Fig. 2 Generation of candidates sometimes requires a se-
quence of operations to arrive at a complete design

evaluate the worth of a single design decision until a final design
is created. Knowledge-based approaches such as case-based rea-
soning may be useful to guide the search to successful designs.
Completed designs at the leaves of the search tree can be evalu-
ated based on the performance parameters initially defined by the
user. As in optimization, one can visualize a projection of the
candidates and their performance values. However, the concept of
neighboring states is complicated since the process must undo
previous decisions and make new ones in order to arrive at the
neighboring states.

2.2.3 Agents. The concept of using design agents to substitute
for the human ability to make decisions during synthesis has also
been explored by several researchers [45-47]. Collaborating
agents, each representing a different human expertise or prefer-
ences, have been used to synthesize new designs. The collabora-
tion may be ordered (i.e., deterministic), random, or stochastic
with agents being invoked as a result of probabilities determined
from past successes.

2.3 [Evaluation. As is shown in Fig. 1, the third task, evalu-
ation, involves measuring the worth or potential success of a can-
didate. Although the generation of design concepts alone may
provide a benefit to the designer, any automated synthesis system
must include an appropriate level of design evaluation to provide
feedback to guide the generation process. For some design prob-
lems, the evaluation may be a simple analytical expression; how-
ever in most design problems, the evaluation often involves simu-
lation of the solution. Finite element methods, computational fluid
dynamics, circuit simulation, and other computational analysis
tools offer accurate and robust evaluation analyses. Figure 3,
which is a detail of Fig. 1, shows that evaluation includes three
distinct steps if external simulations are used. Some common dif-
ficulties in combining simulation tools within computational syn-
thesis include: (1) since search processes often rely on testing
thousands of candidates, the time required to analyze each solu-
tion must be kept to a minimum; for example, a finite element
simulation that takes an hour could cause the search process to
take thousands of hours; (2) in order to perform a simulation,
detailed preprocessing often must be done for each simulation;
this can involve the time-consuming process of setting up the
proper boundary conditions and the resolution of the discretization
(e.g., meshing of elements, or time steps) which is often per-
formed by an engineer with experience and knowledge; (3) the
postprocessing of the simulation data is complicated by the fact
that a single metric of design worth is required and solutions may
have defects that can only be found by considering all the data; (4)
simulations sometimes fail due to problems in calculations, such
as the singularity of a matrix or unbounded iteration. These fail-
ures can cause the entire search process to halt prematurely if not
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Fig. 3 A flowchart combining simulations tools with computa-
tional design synthesis

handled properly; and (5) engineering design problems often con-
tain more than one measure of design worth, requiring the balanc-
ing of multiple objectives; multiobjective optimization continues
to be a significant hurdle in computational design synthesis.

These challenges have motivated research in merging computa-
tional synthesis methods with computational analysis methods.
Hybrid methods might be able to handle invoking and interpreting
the simulations required for evaluating candidate solutions. In past
synthesis methods [48,49], significant development has been re-
quired to create a robust evaluator that negotiates these
difficulties.

One practical aspect of evaluation is designing search tech-
niques that minimize the number of evaluation calls. Recent ad-
vances in computational speed and memory have made this goal
less important in some instances, but with the exception of deter-
ministic, one-time generation algorithms, most generation algo-
rithms require multiple iterations, at times on the order of tens of
thousands, making computational speed a significant concern.
Complex or lengthy simulation analyses can make such design
runs impractical. The most effective approach, then, is to develop
quick evaluation heuristics for the early stages of the search pro-
cess to steer the search to productive areas of the design space. As
the algorithm progresses, or for the final evaluation, more com-
plex simulations can be used [50,51].

2.4 Guidance. The final task in the synthesis process is to
provide feedback to the system. Based on objective function val-
ues determined in evaluation, the goal is to find an approach to
designing or generating improved solutions. Two approaches are
real time iteration and long-term strategy. For real time iteration,
the algorithm provides direction by dynamically analyzing the re-
sults of the evaluation and directing the algorithm toward im-
proved designs for subsequent iterations. Examples of guidance
techniques include greedy search (select the solution that is be-
lieved to be closest to the goal), Metropolis criteria (the stochastic
approach adopted in simulated annealing), or any type of genetic
algorithm selection technique (elitism, roulette wheel approach,
etc.) Machine learning techniques are also potential guidance
strategies [52]. Guidance is akin to learning from experience. The
basis of Tabu search [53] is a guidance strategy that builds on past
design experience; this search technique is used in the A-design
method discussed below.

Another approach is to learn from the execution of the algo-
rithm so that in subsequent design tasks the system can be more
effective and efficient. Learning may be problem or domain spe-
cific, or it may focus on the design process itself. While con-
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Fig. 4 (a) The flowchart presented in Sec. 2 can be used to describe the synthesis method of bistable mi-
croswitches; (b) three example solutions that have two stable positions (one shown in black dashed lines and one

in solid grey lines) that are 20 um apart

strained by the representation, the guidance strategy is pivotal to
the effectiveness and efficiency of the synthesis method. Concepts
can be borrowed from other approaches to improve a computa-
tional synthesis process. Guidance is closely tied to generation. In
the optimization approach to generation, the two are often insepa-
rable.

3 Applications

An extensive body of work exists on formal design synthesis.
The books Formal Engineering Design Synthesis [5] and Engi-
neering Design Synthesis [6] present surveys of the field and de-
tailed investigations into projects, theories, and visions for the
field. Recent highlights include: research on automatically creat-
ing circuits for both passive and active applications [54]; Sims
[48] and White et al. [55] evolve animal-like robots configured
from actuators and limbs to create walking, jumping, and swim-
ming motions. Peysakhov and Regli [56] build Lego structures
that meet given spatial constraints. Shea, et al. [57] construct
tensegrity structures composed of interconnected beams and
cables. Even the design of wireless internet access points has been
automated through invoking a genetic programming approach to
positioning and interconnecting hubs [58].

The following subsections present examples from our own
work that demonstrate the application of the automated design
synthesis model presented in Sec. 2. Many of these applications
have been transferred outside academia to industrial use or com-
mercialization.

3.1 Design Synthesis of Multistable Compliant Structures.
The design of compliant bistable microswitches presents a diffi-
cult challenge in structural and topological optimization [59]. Not
only must one design a structure that is compliant within the range
of desired displacements, but one must also simultaneously design
the structure so that it can maintain new positions with no power
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or force input. Such devices are useful in high-power integrated
circuitry in which discrete switches are necessary to handle high
currents. Since the shape of such structures is difficult to conceive,
an automation tool is developed to synthesize these structures.

Figure 4(a) shows the generation and guidance tasks accom-
plished by a genetic algorithm (MATLAB’s Genetic Algorithm
Optimization Toolbox [60]), which is a popular approach used in
numerous synthesis methods due in part to its ability to find so-
lutions in highly constrained search spaces. While the most natu-
ral representation for the design space would be a family of
graphs with nodes representing intersections and edges represent-
ing beams, the implemented solution conforms to the needs of the
genetic algorithm by representing alternatives as a list of real
numbers. Within this list, the dimensions for each beam (length,
width, and angle) are interspersed with “keypoint” values that
assign the ends of each beam to the particular intersections that
develop at the connections of other beams. While the design rep-
resentation is limited to a vector of fixed length, the keypoints,
allows one to create a variety of topologies including all beams
connected in series, all beams connected in parallel, or any com-
bination in between. Figure 4(b) shows designs synthesized auto-
matically which meet the design goals of having two stable posi-
tions 20 microns (107 m) apart and an actuation force of 1 uN.
In these figures the black dashed lines represent the undeformed
skeleton of the device and the gray solid lines represent the struc-
ture in the second stable position, which is always 20 microns
directly above the first. The unintuitive nature of designing such
bistable devices on the microscale provides an excellent testbed
for computational synthesis [61].

3.2 A-Design: Agent-Based Design. A-design is an agent-
based computational design methodology that merges two genera-
tion methods, genetic algorithms with knowledge-based search, to
synthesize electro-mechanical configurations based on functional
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input dx = 0.7mm, accuracy = 0.2 rad.

Fig. 5 Weighing machine designed by the A-design (from [46])

reasoning [46,62]. A population of designs is created by agents,
with each formation of a population considered a generation. At
each generation, designs are evaluated and sorted. Inferior designs
are pruned away. The remaining designs, including those forming
a Pareto optimum, are the basis from which new solutions are
formed and compared, thus providing guidance to the method.
The use of populations differs from traditional genetic algorithms
in that modifications of the designs are explicitly goal-directed
and are heavily influenced by deterministic knowledge about the
problem domain. The better designs are fragmented and rebuilt,
forming the basis for the next population. The process continues
until it converges. It uses recursive information that allows for
rapid and flexible design modification in response to changes in
design evaluation criteria. The initial work uses a function
structure/bond graph representation to build agents.

In the A-design methodology, configuration agents, defined in
the work as knowledge-based strategies, combine to produce de-
sign solutions in a collaborative, stochastic manner. Additionally,
the population of design agents changes over time via a manager-
agent that modifies the probabilistic weightings for choosing agent
types based on their relative success in producing good designs
and on user preferences, which can change over time. Figure 5
shows a weighing machine generated by A-design using its func-
tional representation and a catalog of parts. The system has also
been applied to the optimal design of bulk manufacturing pro-
cesses [63], extending the technique for design optimization
applications.

Olson and Cagan [47] extend the A-design approach to model
cooperative agents. Unlike the initial approach in which agents
collaborate independently, each making a change without regard
to preferences of the other agents, this extension frames each
member agent within a cooperative team context. That is, each
agent acts under the assumption that associated member agents
share the same mutual goals, have similar capacities, and intend to
follow the designated team processes. Under these assumptions,
each agent evaluates and makes suggestions for the best design
move according to its particular view, but final design decisions
are always made in light of group suggestions and consensus. The
collaborative team searches the space more extensively but also
more efficiently, generating significantly improved quality in the
same run time as a concurrent but noncooperative algorithm. The
difference in synthesis approach is a more sophisticated genera-
tion and guidance method.

The system has been extended to incorporate new learning and
memory capabilities based on cognitive principles [64]. In par-
ticular, this work is based on the finding that experts in a domain
have a large set of commonly co-occurring linked elements or
“chunks.” A design chunk is a group of interconnected compo-
nents that appear in multiple designs. By learning design chunks
from a problem it has solved, the A-design system can apply these
chunks to new problems. The processes incorporated into the sys-
tem are not complex and are the simplest processes that still dem-
onstrate chunking based on findings from studies of human exper-
tise. The system can now solve a design problem better and faster
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using design chunks than without. The system also demonstrates a
limited transfer of knowledge across problems when it has learned
design chunks from one problem and applied them to another
related problem.

3.3 Layout. Determining placement locations for components
within a product housing or container is one synthesis problem
that has received much attention and success. The placement must
adhere to an extensive list of required constraints while optimiz-
ing for specified objectives. The layout problem is difficult and
time intensive making an automated tool capable of solving such
problems extremely valuable. For example, deciding where to
place components on the board consumes 50% of the time re-
quired to design a printed circuit board (PCB). Currently the PCB
layout process is manual, often requiring six weeks to complete a
design. There have been no commercially available tools to auto-
mate the placement of components on PCBs, in engine compart-
ments of cars, or within aircraft, among other applications. Math-
ematically the problem is difficult, with multiple local optima and
discontinuities in the space, complicated by the high number of
components, constraints, and multiple objectives.

Szykman and Cagan [65] formally defined 3D component lay-
out as follows: “Given a set of three-dimensional objects of arbi-
trary geometry and an available space (possibly the space of a
container), find a placement for the objects within the space that
achieves the design objectives, such that none of the objects in-
terfere (i.e., occupy the same space), while satisfying optional
spatial and performance constraints on the objects.”

The nonlinear, multimodal, and discontinuous nature of the
typical layout space makes finding a solution challenging. A sur-
vey of approaches to solving this problem can be found in [66].
Many of the generation methods have been applied to the 3D
layout problem are optimization methods with the exception of a
heuristic-based bin packing algorithm [67]. Gradient-based algo-
rithms, which settle in a local minimum [68,69] produce inferior
results to stochastic algorithms which inevitably require more
computational time. Several stochastic methods include: genetic
algorithms (GAs) [70,71] and simulated annealing (SA) algo-
rithms [72-75]. These approaches are effective, once the coding
of GAs is determined, but require unacceptably long run times for
realistic 3D problems. Hybrid approaches have also been consid-
ered with unsatisfactory results [76].

One of the most effective methods to solving the general layout
problem uses a stochastic version of the pattern search algorithm
called Extended Pattern Search (EPS) [77]. Pattern search algo-
rithms use patterns, which are search directions with varying step
sizes, to explore a search space in a greedy manner [78,79]. In 3D
component layout, the patterns are the translations and rotations of
components and step sizes are the amounts of translations and
rotations. The search space is explored starting with large step
sizes of the patterns. When patterns with a particular step size no
longer improve the solution, the step size is decreased by a com-
mon multiplicative factor. Extensions are introduced to the basic
pattern search method to help converge to good solutions and
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make the algorithm efficient [77]. Alternative patterns have also
been explored [80]. Extensions have further refined the EPS algo-
rithm to take into account the relationship between pattern size
and component geometry [81,82]. The basic representation as an
optimization problem uses an objective function-based formula-
tion by first optimizing the weighted sum of component density
while minimizing component overlap. An octree representation
[83,84] is used for fast intersection evaluation between compo-
nents of complex shapes. Evaluation takes place first through geo-
metric analysis based on the octree calculations, with additional
performance evaluation added through simulation or heuristics.
Guidance occurs through the pattern directions coupled with re-
duction in step size at the appropriate points in the algorithm’s
execution.

The EPS technology has been applied to the design of auto-
matic transmissions, the layout of a truck chassis, the packing of
trunks to meet SAE specifications, the layout of engine compart-
ments, and the layout of parts to be made within SLA machines.
Figure 6 shows an engine compartment placement, a trunk pack-
ing, and an SLA packing each automatically laid out with this
technology.

The Extended Pattern Search technology for product layout has
matured to the point of being commercialized by DesignAd-
vance™ Systems, Inc., a spin off from Carnegie Mellon Univer-
sity. DesignAdvance has extended the basic technology to layout
2D Printed Circuit Boards (PCBs), its first commercial product,
and is in the process of developing a commercial version of EPS
for general 3D application to mechanical and electromechanical
products.

3.4 Shape Grammars, Interpreters, and the Study of
Brand. Shape grammars were introduced by Stiny and Gips [35]
in the architecture literature. Shape grammars are a production
system of shape or geometry with the properties of parametrics
(one shape can represent an infinite number of them) and emer-
gence (you may get out more than you put in). Initial exploration
of shape grammars by Stiny focused on describing and recreating
architectural styles including Chinese Lattice designs [33],
Palladio-style villas [34], and Mughul gardens [87]. Several other
applications followed, most notably recreating the prairie homes
of Frank Lloyd Wright [36].

Beyond architecture, shape grammars have applications in en-
gineering and industrial design. For example, Agarwal and Cagan
[88] introduced the coffeemaker grammar; Brown et al. [89], the
lathe grammar; Shea and Cagan [90]), the truss grammar; Agar-
wal, et al. [91], the MEMS resonator grammar, McCormack and
Cagan [92], the inner hood panel grammar; Pugliese and Cagan
[93], the Harley motorcycle grammar; and McCormack et al. [94],
the Buick Grammar. The focus on the last two references was on
the representation of product brand. The thesis is that classes of
products could be broken into discrete attributes that could then be
modeled in a shape grammar. The advantage is not only articulat-
ing the grammar but enabling a tool to guarantee that products are
generated that meet a brand identity. In the Harley grammar, brand
was captured through constraints applied to a grammar that gen-
erated motorcycles while in the Buick grammar, the essence of
Buick is captured within the shapes that define the rules of the
grammar themselves (see Fig. 7).

Shape grammars are a representation of design descriptors that
can be acted on by a generative system. For example, an
optimization-based generative scheme can be used to search the
space of design options described by shape grammars. In the
shape annealing method, Shea et al. [95] use a simulated anneal-
ing algorithm with a shape grammar to design optimal truss and
frame structure configurations (see Fig. 8). Evaluation is done
with a finite element method, made possible because the transla-
tion of design topology to finite element model was relatively
straightforward. Guidance was provided through Hustin move sets
within the simulated annealing algorithm to encourage larger
moves initially and smaller ones later in the run [96]. Shea and
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Fig. 6 Layout configurations from Extended Pattern Search
(a) from [77]; (b) from [85]; (c) from [86])

Smith [97] applied the technique to the design of transmission
towers. Shea and Zhao [98] developed an industrial version of the
method called eifForm and used the method to develop a cantile-
ver structure called the “Paternoster Square Noon Mark,” built
and permanently installed in London on the London Stock Ex-
change building in Paternoster Square.

General implementation of shape grammars requires a system
that can interpret shapes, seeking new forms that emerge out of a
configuration of lines (straight or curved). McCormack and Cagan
[99] introduced a framework that provides a means to implement
and use shape grammar technologies in design practice via the a
shape grammar interpreter. A user working with the grammar
through an interactive loop chooses which of the applicable rules
to apply and where to apply it. Alternatively, an optimization rou-
tine can make the choices presented by the interpreter concerning
rule selection, application location, and parameters during instan-
tiation. After each rule application, the design is examined and if
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Fig. 7 Novel Buicks generated from shape grammars (from
McCormack et al. [94])

the design is deemed completed, it is presented to the user, or, if
not, the design is modified by the user or the optimization routine.

4 Discussion

The model of the synthesis process consists of four steps: rep-
resentation, generation, evaluation, and guidance. Any research
endeavor that focuses on the synthesis process should, whether
explicitly or implicitly, address these four steps. In solving new
problems, there are a number of issues to consider. Below is a list
of questions that one should consider in tackling new problems.

4.1 Representation.

4.1.1 What are the Basic Building Blocks in the Design
Problem? The first step in the representation of design is to deter-
mine the list of building blocks from which the design (feasible or
infeasible) can be created. It is to be noted that generally with the
increase in the number of basic building blocks the design solu-
tion space expands exponentially. On the other hand lowering the
number of basic building blocks leads to lesser exploration of
design space.

K
I".-f/’

Fig. 8 “Paternoster Square Noon Mark” truss structure de-
signed with shape annealing (eifForm) by Shea and Zhao [98].
Model and actual structure are shown.
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4.1.2 How are Interrelations Between Basic Building Blocks
Going to be Handled? Constructing designs from fundamental
elements becomes complicated when the fundamental elements
are not all of the same type. Having different building blocks
gives rise to differing interrelations between these blocks and how
they affect the entire design. A method for defining the way build-
ing blocks interact together is required.

4.1.3 Can You Live With a Representation That Leaves Out a
Large Set of Feasible Solutions? or (Can You Live With a Repre-
sentation That Includes Numerous Infeasible Solutions?) Con-
structing the rules of a representation rarely perfectly delineates
the search space into feasible and infeasible solutions. If a clear
penalty can be assigned to infeasible designs then perhaps allow-
ing these to exist is acceptable since it allows for much complete
search. However, if much of the search is wasted on infeasible
designs, one might consider a representation that is more focused
at the expense of overlooking a portion of feasible design.

4.1.4 Is it Possible to Capture Different Technological Solu-
tions to the Same Subproblem? In engineering, one often simpli-
fies a phenomenon to a simpler model both for analysis and de-
sign purposes. However, since diverse approaches to solving a
design problem should be examined, it would be ideal to construct
a representation that can test different approaches within the same
search. For example, if one were to create a heating system (i.e.,
oven) for a specific application, it would be nice for the compu-
tational design synthesis to include radiative, convective and mi-
crowave approaches within the same search.

4.2 Generation.

4.2.1 Can a Completely Random Decision be Made for Each
Design Step? If each decision in the generation process can be
made randomly, chances of finding “creative” solutions increases.
However, complete randomness also brings with itself the curse of
time-consuming search as the design space explored becomes
vast. A careful tradeoff needs to be made to balance the explora-
tion versus time-consumption.

4.2.2  Should Design Constraints be Hard vs Soft? A careful
generation technique can easily take into account some of the
design constraints without affecting the design generation time.
However, the decision to introduce the constraints within genera-
tion needs to be made judiciously because in some cases con-
straints may prevent a thorough search of the design spaces. In-
cluding constraints in generation makes them hard constraints
since the search will not explore candidate which it is prevented
from generating. Another effective method of handling constraints
in design is to use “penalty functions” within the evaluation stage.
These are deemed soft constraints since the search process is al-
lowed to explore these regions despite their infeasibility. One
must be judicious in selecting which constraints are to be handled
in the generation stage and which are to be handled trough the use
of penalty functions. Hard constraints tend to reduce computing
time but also reduce the effectiveness of an algorithm.

4.3 Evaluation.

4.3.1 Are There Multiple Objectives to Handle? The nature of
objectives being evaluated during the evaluation stage also affects
the selection of appropriate techniques for optimization. Most of
the algorithms/techniques work for a single objective. Multiobjec-
tive problems are handled mainly in two ways, the first is to
convert the multiobjective into a single objective (for example
through use of weighting method), the second is to consider the
“Pareto-optimality” approach. Conversion of multiobjective into
single objective enables the use of most of the techniques, how-
ever such a conversion is highly debated in “Pareto-optimal” ap-
proach literature. Only special types of algorithms like Multi-
Objective Genetic Algorithms, A-Design, A-Teams, etc. are able
to take into account the “Pareto-optimality” concept. Hence, it
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becomes important to answer the question posed in this section
and make appropriate decisions based on the answer.

4.3.2  Does the Evaluation Require External Analysis? or (Can
a Simple Model be Created Which Captures the True Design
Challenge Without External Simulation?) In some of the design
problems it becomes essential to perform external analysis to
evaluate the design. Generally, whenever an external analysis is
performed through the use of some “software,” the full capability
of the software is rarely used and in some cases only approximate
evaluations are made through the use of the software. In such
cases it is sometime beneficial to develop a simple model that
captures the true design challenges and encode this with the
search process and avoid external simulation. This will require
extra effort in terms of linking this simple model to search pro-
cess, but it will be more customized to the problem and lead to
higher quality of solution.

4.3.3 Will There be a Need to Handle “No Evaluation”
Situations? It is sometimes necessary to handle situations where
evaluation information is unreliable (not all candidates may pro-
duce valid evaluation information). In such cases, it is necessary
to provide for means in the search procedure that can handle these
situations.

4.3.4 Does it Make Sense to Minimize or Maximize What is
Being Evaluated? 1t does not always make sense to maximize or
minimize an objective function. The goal of the design problem
could be more of satisficing [2] where constraint programming
approaches might prove more useful than optimization.

4.4 Guidance.

4.4.1 Is Gradient Information Available and/or Useful? In
many situations where the objective function space is smooth one
can easily extract the gradient information and use it through the
application of appropriate algorithms to find the optimal solution.
However, if the objective function is not smooth then one has to
restore to the heuristics like GA, Tabu Search, SA etc., for search-
ing the objective function space.

4.4.2 How Well is the Space Characterized? Different algo-
rithms work better in different types of space characteristics. In-
formation about the search space characteristics could help in pre-
paring better guiding strategies or selecting appropriate algorithms
and heuristics (whose performance is mainly based on the inbuilt
guiding strategies). If the design space is multimodal in nature,
special provision should be provided in the search process to con-
front the peaks and crests in the objectives.

4.4.3 How Much Memory/Experience to Utilize? or (How to
Balance Time vs Space?) Algorithms, which developed 30 years
ago in an era when computational memory was costly, tend to
avoid accumulating information about past candidates. In general
for all algorithms there is some compromise between the usage of
computational memory and time required to solve the problem. In
such cases it is suggested that the use of computational memory
be leveraged to offset the computational time since computational
memory is much cheaper within current computational hardware.

Some algorithms (e.g., Tabu search) generally tend to capitalize
on the in-built memory of the algorithm. In using these algorithms
one needs to make careful decisions about how much memory to
use. Recalling the quality of past candidates can make a guidance
strategy more efficient, but using higher amount of memory can
possibly inhibit novel solutions.

4.4.4  Exploration vs Exploitation? Exploration of the solution
space generally means that the more we explore the solution space
the better we have the chance to find the optimal solution (or
solutions). However, more exploration leads to higher time con-
sumptions. Exploitation of the solution means that we use the
space information to find a solution in less time. However, these
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may lead to local optima (or reduce the chances of finding optimal
solution). Hence, the selection of an algorithm highly depends on
answering the question; how does a search algorithm balance ex-
ploration of a search space and against the exploitation of the
information regarding the search space.

5 Conclusions and Future Directions

The division of computational design synthesis into these four
areas: representation, generation, evaluation, guidance: is the use-
ful approach in solving complex design problems. Every problem
domain has unique challenges that are not always best solved by a
single synthesis method. Dividing the problem into these four
challenges is a rigorous approach to establishing effective compu-
tational synthesis methods. Furthermore, one can postulate on fu-
ture research directions by examining these four challenges. The
emphasis will be on how to make these aspects more effective,
more efficient, more intelligent, more complete, and better inte-
grated. And, like the first design tools developed at Westinghouse
for motor design, the emphasis will be on how to transfer this
research to the industrial sector for use.

Although optimization methods have been the basis for the cur-
rent generation and guidance schemes for synthesis systems, fu-
ture methods will focus on learning and cognition for models and
techniques for automated synthesis. Learning methods from Al
will improve the automated synthesis process to improve search
within a run [100] or for transfer to successive runs or application
across problems [64]. Another area is research on understanding
and transferring models of the cognitive process to synthesis al-
gorithms to improve the synthesis process, including methods of
search—generation and guidance—as well as representations. For
example, Moss et al. [64] posit that changes in representation
during problem solving are a key element in the synthesis process.

Representations are critical to the richness and sophistication of
designs generated. For example, functional representations that
are easy for designers to handle will allow them to describe re-
quirements in a more natural way and to come up with design
solutions much more easily and quickly in a computation synthe-
sis process. These functional descriptions can play a crucial role in
lifecycle data and knowledge management by further generating
helpful information for designers and engineers in later stages of
the product life cycle. The ability to represent and evaluate life
cycle considerations is critical to their long-term success and
adoption and may even accelerate the incorporation of these sus-
tainability considerations into the design process.

Mass customization across the internet opens up new possibili-
ties and technologies for synthesis methods. The internet has en-
abled knowledge sharing so that businesses can now cater to a
wide range of customers [101]. Indeed there is an interesting par-
allel between the R1 synthesis method [102,103] developed in
1982 for automatically creating computer configurations and cur-
rent web-based configuration tools used by end-users [104], in
which computers are customized for an end-user’s needs. How
user needs are assessed and captured and how those are translated
into delivered products, presents new opportunities for computer-
based synthesis research and application. One approach to repre-
sentation that may be especially effective for internet-based de-
sign is found in the NIST Design Repository Project that seeks to
provide a common framework for engineering artifacts and engi-
neering principles [105].

Whatever future directions are pursued, one common concern is
the appropriate balance between reasoning and brute-force search
in the synthesis process. Increased reasoning capabilities can en-
able more sophisticated design representation and search, while
increased computational speed can enable faster search of larger
design spaces. Efficient approaches to evaluation and constraint
representation continue to be a challenge to the reasoning abilities
of synthesis tools on the problem level, while more sophisticated
approaches to generation and guidance affect intelligence on the
process or system level. While the potential impact on design
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practice is great—promising to change the speed and scope of
design creation—research into design synthesis will also chal-
lenge and impact our understanding of human intelligence and
creativity.
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