
Amaresh Chakrabarti
Innovation, Design Study and Sustainability

Laboratory (IdeasLab),

Centre for Product Design and Manufacturing,

Indian Institute of Science,

Bangalore, Karnataka, India

Kristina Shea
Virtual Product Development Group,

Mechanical Engineering,

Technische Universität of München,

Garching, Germany

Robert Stone
School of Mechanical, Industrial and

Manufacturing Engineering,

Oregon State University,

Corvallis, Oregon

Jonathan Cagan
Department of Mechanical Engineering,

Carnegie-Mellon University,

Pittsburgh, PA

Matthew Campbell
Department of Mechanical Engineering,

University of Texas at Austin,

Austin, TX

Noe Vargas Hernandez
Department of Mechanical Engineering,

College of Engineering,

The University of Texas at El Paso,

El Paso, TX

Kristin L. Wood
Department of Mechanical Engineering,

The University of Texas at Austin,

Austin, TX

Computer-Based Design
Synthesis Research:
An Overview
One of the hallmarks of engineering design is the design synthesis phase where the crea-
tivity of the designer most prominently comes into play as solutions are generated to meet
underlying needs. Over the past decades, methodologies for generating concepts and
design solutions have matured to the point that computation-based synthesis provides a
means to explore a wider variety of solutions and take over more tedious design tasks.
This paper reviews advances in function-based, grammar-based, and analogy-based syn-
thesis approaches and their contributions to computational design synthesis research in
the last decade. [DOI: 10.1115/1.3593409]

Keywords: synthesis, search, optimization, grammars, analogy, biomimetics

1 Introduction

Engineering design is the process of satisfying requirements by
developing and synthesizing building blocks into meaningful
designs that meet the requirements to fulfill needs and desires.
Requirements satisfaction depends both on how well requirements
are identified, and how well these are applied during the design
process [1]. The process and resulting design are at times novel,
creative and innovative, and at times routine. Design synthesis is
the area of research that focuses on developing guidelines, meth-
ods and tools for supporting creation of such solutions. Computer-
based design synthesis is important for two reasons: it is
sometimes hard to develop novel solutions due to limitations of
knowledge or fixation. Here, computers can help designers explore
new directions by providing a wider variety of possibilities thereby
expanding the range of solutions that are normally considered and,
possibly, improving novelty. The other difficulty is the tedium in
some design synthesis tasks, e.g., during routine design. In this
case, computers can automate tasks, leaving more time for creative
activities, and help reduce errors, thus improving value.

In this paper, three major synthesis themes are reviewed: func-
tion-based synthesis, grammar-based synthesis, and analogy-
based design. Function-based synthesis focuses on developing
representations of a design problem in terms of its functions and
producing solutions from functional models. Grammar-based syn-
thesis focuses on developing formal grammars, which contain a
design vocabulary and rules that are applied interactively or auto-
matically by computers for transforming initial designs into a
wide variety of new designs. Analogy-based design involves iden-
tifying analogical knowledge for solving a given design problem
and transferring this knowledge to develop solutions, with special
focus on case-based design and biologically-inspired design.

2 Function-Based Synthesis

The front end of the conceptual design process has seen few
attempts at automation, perhaps due in part to the evolving strat-
egies and methodologies that exist for this phase of design. How-
ever, over the past decade, several methodologies have coalesced
around the functional decomposition and partial solution manipu-
lation techniques originally introduced by Pahl and Beitz [2], e.g.,
[3–12]. These methodologies take designers through steps that
help decompose a design problem and build conceptual solutions
based on the intended, product functionality. Functional modeling

Contributed by the CAD/Solid Modeling Committee of ASME for publication in
the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received October 5, 2010; final manuscript received February 2, 2011; published
online June 15, 2011. Assoc. Editor: J. Shah.

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021003-1
Copyright VC 2011 by ASME

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



methods abstract the intended functionality of a solution from cus-
tomer needs, ideally removing designer biases that may be intro-
duced by focusing on specific solutions too early in the design
process. This abstraction helps designers generate more complete
conceptual solutions and balance design choices among alterna-
tive components with the same functionality [2].

Research into the benefits of structured design methods (e.g.,
[13]) coupled with research into designers’ reluctance to use them
(e.g., [14,15]) seem to point toward the need for the seemingly tedi-
ous stages of systematic design to employ some level of automation
to help integrate the benefits of a structured method with the more
natural activities of a designer–a need that is most evident during
the early phases of conceptual development.

Computational tools for conceptual design do exist, yet these tools
often address areas that support aspects such as initial requirements
gathering (e.g., organizational tools such as the TikiWiki project
[16]), the creation of function structures (e.g., the function grammar
tool developed in Ref. [17]), or optimization of well-established con-
cepts (e.g., [18]) rather than the translation of functional requirements
into creative solutions.

2.1 Fundamental Developments Supporting
Functional Synthesis

2.1.1 Product Function Representations. Function is vari-
ously described, the two convergent alternative meanings being
device-centric and environment-centric [19,20]. Functional mod-
eling is often considered a fundamental abstraction and a key step
in the conceptual design process [5,21–26]. Its application allows
design problems to be quickly abstracted without the need to con-
sider potential components, known solution principles or design
impossibilities. Functional modeling from a constrained list of
computer parseable terms can trace its roots back to value analysis
with the work of Miles [23] and Rodenacker [27]. This early work
is expanded through the proposal of additional functions by Roth
[28], and further formalized through the Koller’s proposal of
twelve basic functions [29]. At a high level of abstraction, Pahl
and Beitz develop a list of five generally valid functions and three
flow types [30]. Hundal then proposes a set of six function classes
[31], but excludes the flow of information, which is re-added by
Little et al., with the functional basis set [32]. Standardized sets of
function and flow terms are proposed separately by Szykman et
al. [33] and Stone and Wood [34]. These terms are reconciled by
Hirtz et al. into the functional basis [35] to form a standard lexi-
con consisting of two sets of morphemes—one for functions and
another for flows.

Beyond functional basis modeling, various parallel functional
modeling and associated synthesis techniques have been proposed
and explored to aid design. Alternative to the view of developing
function models using a vocabulary of general functions independ-
ent of artifacts is the complementary view, originated by Hubka
and Ernst Eder [7], where functions at a higher level of abstraction
can be decomposed further only with the assumption of the means
with which to fulfill these functions. It was further demonstrated
by Chakrabarti et al., theoretically [36] and empirically [37] that
functions cannot be further decomposed, while ensuring both con-
vergence to solutions and solution-neutrality. Function-means tree
is the generic name given to this coupled nature of functions and
structures [38]; similar concept is used in synthesis of computer
programs [39]. A variety of systems have been developed to com-
putationally support synthesis as development of function-means
trees, interactively [e.g. 40,41] or automatically [36,42,43].

Either of these approaches requires mapping descriptions of func-
tion to descriptions of means to fulfill the function, sometime requir-
ing multiple levels of abstraction to connect the overall function and
the final structure. Various models to support functional synthesis
have been created, starting from the initial function-structure models
[e.g., 39], to transformation-function-organ-structure model [7],
transformation-organ-structure model [38], function-behaviour-
structure model [44], structure-behavior-function model [45],

function-behavior-state model [46], function-environment-behavior-
structure model [47], function-behavior-component model using
Bond-graphs [48], and the more recent and comprehensive State-
Action-Part-Phenomena-Input-organ-Effect (SAPPhIRE) model of
causality [49], each with associated synthesis support. More com-
plete reviews can be found in Refs. [36, 50–56].

Design Knowledge Collection and Storage. Designers often de-
velop conceptual designs that draw inspiration from previous
design knowledge [57–61]. This inspiration-based approach, a
form of design by analogy, is discussed further in Sec. 4. Here, we
consider fundamental underpinnings that allow functional knowl-
edge about a product or artifact to be collected and stored to sup-
port knowledge reuse.

The main objective of using a design repository is to facilitate
storage and retrieval of design knowledge at various levels of
abstraction, from form to architecture to function, during the prod-
uct development process. Building on the functional basis repre-
sentation, a prototypical design repository–following the National
Institute of Standards and Technology (NIST)-proposed format–
has been developed [62–64] to support design archival and reuse–
essentially within-domain design by analogy. Currently, the
repository is housed within the Design Engineering Lab at Oregon
State University, and contains design information for approxi-
mately 150 consumer-based electro-mechanical products. The
repository currently follows the NIST schema, and identifies arti-
fact-, function-, failure-, physical-, performance-, sensory-, and
media-related information for each product in XML format [65].
The variety in levels of abstraction and types of design informa-
tion provide innovative ways to approach design. Initially, artifact
information in the repository was recorded in spreadsheets in the
form of a collection of files of bills of materials, function compo-
nent matrices, and design structure matrices. This information was
migrated to a more rigorously defined database.

More recently, Oregon State has partnered with UT-Austin
[66,67], Penn State [65], Virginia Tech, Bucknell [68], University
of Buffalo, Drexel [69], and Texas A&M to expand the types of
design information and breadth of design tool features within the
repository. The design repository serves as a hub for designers for
information exchange and design generation tools. Information
entry and retrieval occurs within a standalone application [70]
(see http://designengineeringlab.org/repositoryEntry/), while in-
formation retrieval occurs over the Internet through the design
repository web portal (see http://repository.designengineeringlab.
org/). The infrastructure supporting these two applications is the
design repository information ontology [65]. The ontology
describes what types of design information can be stored, relation-
ships among those elements, and the extensibility of including
new and additional types of design information.

2.2 Computer-Aided Functional Synthesis. Computerized
concept generation techniques, spanning the broad automatic input
topics of knowledge representation and reasoning, promise faster
realization of potential design solutions based upon previously
known products and implementations. While the area of automated
concept generation has made great strides in recent years, most
methods still require the user to indicate desired functionality.
Using functional descriptions has been shown to help engineers
stray away from pre-trained ideas of how a product or device would
look and operate [4]. Two of the automated function-based synthe-
sis methods under development today rely solely on the user’s abil-
ity to develop functional descriptions of their desired product. Both
these methods make use of a repository of design information
including component connection and component functionality. A
component naming taxonomy to classify product artifacts was for-
mulated to standardize the output of the automated function-based
synthesis methods [71]. Each artifact is classified under a specific
component name according to its primary functionality.

The recent foundations for concept generation through compu-
tational reasoning have been based on formalisms for describing

021003-2 / Vol. 11, JUNE 2011 Transactions of the ASME

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



function or purpose in engineering design. Some results from this
research include automated morphological matrix generation from
the design repository [72,73], more expansive overall concept
generation algorithms based on the empirical knowledge of func-
tion-component connections in the form of relational matrices
[64,66] and graph grammar rules [74,75] (which are detailed fur-
ther in Sec. 3) that, when combined with a search mechanism,
automatically creates conceptual designs. These automated con-
cept generation algorithms give designers the ability to quickly
generate concepts based on knowledge stored in the design reposi-
tory. The two complementary methods both rely on repository in-
formation, utilize matrix manipulation and graph-grammar rules.
The matrix manipulation-based concept generation method, mor-
phological evaluation machine and interactive conceptualizer
(MEMIC), translates the input function structure into a matrix
form that describes the adjacency between functions. This input
undergoes a series of matrix multiplications that map functionality
to solutions (components) and filters out infeasible component-
to-component connections based on the repository data. The out-
put of MEMIC is a set of concept variants that solve the input
functionality [14].

From a perspective different from the function modeling
approach discussed above, a number of research efforts have sought
to establish a generic computational scheme for electromechanical
design, including those for sensor synthesis [76]. While these meth-
ods do not all utilize as formal a functional language as expert
human designers tend to use, such approaches have been shown to
successfully synthesize new electromechanical configurations.
These methods use a variety of computer techniques including case-
based reasoning [77], constraint programming [78], qualitative sym-
bolic algebra [79], or geometric algebras [45,80]. One of the most
historically significant among these is PRIDE [81], which uses
expert systems techniques for design of paper handling systems.

In the approaches reviewed, the repeating refrain is that compu-
tational synthesis approaches tend to be computationally complex,
often producing an overwhelming number of concept variants that
are impossible to explore without support; efficient algorihms and
appropriate methods are needed to realistically identify and
explore all feasible solutions. Efficient algorithms to generate sol-
utions [82], Heuristic techniques [83], and side effects detection
techniques [84] to prune solutions, novel visualisation techniques
to explore representative cases in large solution spaces [85], and
structure sharing to create resource-effective solutions [86,87] are
some of the potential approaches for dealing with creation and
handling of large, realistic solution spaces. As shown by Fricke
[88], balanced search, e.g. the ideal approach proposed in Ref.
[89] where synthesis progresses through multiple divergence and
convergence steps, is a possible answer to this. Furthermore, those
results show that subtle challenges in a given design problem may
not always be captured in the specification of initial function, and
thus many results were not relevant to the user’s needs [90,91].
Consequently, the proof of concept designer preference modeler
[92] was created to find within the large set of results which con-
cepts were most meaningful to the designer. By ranking select
concepts, the search mechanism learns what aspects of the con-
cept the user prefers, and seeks solutions that maximize the pre-
ferred aspects.

3 Design Synthesis Using Generative Grammars

An important aspect of conceptual design is the generation of a
wide range of alternative designs that encourage designers to
“think outside the box”. Generative grammars are used to compu-
tationally encode knowledge about creating designs, either a cer-
tain class or style, which can be used to rapidly generate design
alternatives. Both standard and novel solutions can be generated,
that often go beyond a designer’s normal approach to expand their
thinking and spark creativity. Generative grammars can also be
used to better understand solution spaces, including the complex
constraints that often define them, also as they evolve and change

over time under influences from other domains, e.g., changing
customer desires and manufacturing capabilities.

Engineering grammars are a class of production systems that
capture design knowledge by defining a vocabulary and rule-set,
which operates over the vocabulary, to generate a set of designs,
called the design language. While many grammar types exist [93],
the most prevalent in engineering design are graph and spatial
grammars. The term spatial grammars is used to describe all kinds
of grammars that define languages of shape, e.g. string grammars,
set grammars, shape grammars, and graph grammars [94].

An engineering design grammar is developed and applied using
the following main steps:

1. Determine representation, e.g. string, set, shape or graph.
2. Define vocabulary.
3. Define grammar rules.
4. Define initial design.
5. Generate designs within the language, which includes recog-

nizing where and how a rule applies and applying it to gen-
erate a new design.

6. Modify the language, e.g., vocabulary and rules, and return
to step 4.

The typical view is to define a left-hand side (LHS) of rule con-
ditions that define when the rule is valid and a right-hand side
(RHS) of rule modifications, which can involve adding, subtract-
ing, or modifying objects. The LHS is matched to a sub-graph, or
sub-shape, in the working graph, or shape, which is replaced by
the defined graph, or shape, in the RHS of the rule. This “if-then”,
or LHS!RHS format, is common to all grammar formalisms.

This section provides a review of both spatial and graph gram-
mars focusing on major advances in the last 10 years. Many engi-
neering design grammars have been developed that capture the
language of different domains; see Ref. [95] for a review. How-
ever, a main roadblock to achieving wider impact, especially in
conceptual design, has been to support designers in the iterative
development of a grammar, without having to program it directly,
and its application to rapidly generate alternative designs. Thus,
two focal points of the review include recent advances in provid-
ing grammar interpreters as well as automatic learning of gram-
mars. A grammar interpreter is defined as a software program that
interactively and graphically supports the steps defined above,
without the need for extensive programming.

3.1 Graph Grammars. Graph grammars were originally
described as graph rewriting systems, and built on a rich body of
work in the 1950’s on string grammars [96–98]. Over the past 50
years, the advances in expert-systems, object-oriented programming
and even graphical-user interfaces have brought graph grammars to
a level ripe for capturing real and complex engineering design rules.

One example is GrGen, which is an application-independent,
open-source software framework for the implementation and devel-
opment of graph grammars. It provides for the development of an
expressive, turing-complete rule language with extremely fast rule
execution [99]. Integrating GrGen, the open-source software BOOGIE

takes an object-oriented approach to defining a meta-model, or vo-
cabulary, [100] to provide a hierarchical structure for vocabulary
definition and enhance its extendibility and reusability. The meta-
model incorporates different levels of abstraction, i.e., function-
behavior-structure, and defines interconnections between vocabu-
lary, both within one level and between levels, based on the defini-
tion of ports. The definition of ports enables the use of generic rules
at all levels, which are independent from the vocabulary definition,
through port matching, in addition to allowing the graphical descrip-
tion of application specific graph rules. A recent application has
been to the synthesis of hybrid power-train architectures from a
high-level function model down to a structure model [101].

The Design Compiler 43 [102] is a general, Eclipse-based, plat-
form for solving design synthesis problems based on the graph
grammars. The knowledge and procedure to solve design

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021003-3

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



problems can be formalized in a graph grammar where rules are
matched using subgraph recognition based on regular expressions.
The key advantage is the many interfaces provided to transform
design graphs into analysis models, allowing for integration with
common tools, e.g. CAD and simulation. A recent application is to
the design of satellites [103].

The graph grammar software GraphSynth, has been developed
and successfully used as a basis for automatically synthesizing a
number of engineering designs including sheet metal parts [104],
conceptual electromechanical designs [74], and disassembly
sequences [105]. Through a rich graphical user-interface, one can
create graphs, rules, and sets of rules that define a language of
graph topologies. GraphSynth includes a facility to incorporate
search and parametric optimization routines to automate the crea-
tion of designs. In one instance, design repository data are used to
formulate “grammar rules”, currently numbering over 150, to
transform a function structure into a graph of connected compo-
nents, referred to as a component flow graph (CFG).

A main issue with applying graph grammars in engineering
design is that there is no commonly agreed language for writing
them, i.e., graph grammars, containing rich design knowledge, and
resulting designs are not transferable between systems. Generally,
each research group has their own custom representation and imple-
mentation. Research focused on formal, standardized languages,
e.g., SysML or Moka ML [106], as well as using graph grammars
for transforming one model to another would facilitate an exchange
of grammars between researchers and users. While this area of
research in computer science is mature, research is needed to trans-
fer and extend it to meet the complex knowledge representation
requirements in engineering design. One recent approach in this
direction is that of [107] where the formal modeling language
SysML is used to define a set of components, including structure,
dynamic behavior and cost, for which the definition of graph gram-
mar rules is carried out based on the meta-language MOF. This is
successfully applied to generate fluid-power circuits, where rule
application is based on probabilistic selection of rules.

3.2 Spatial Grammars. Spatial grammars have also been
widely used for design synthesis and conceptual design. Shape
rules are defined in the form A!B, where A and B are both
shapes in the vocabulary. Shapes can be represented by strings,
sets, e.g., geometric primitives, shapes defined through maximal
line representations and also graphs, e.g. boundary representa-
tions. Here, the matching of rules is different to graph grammars
in that when detecting sub-shape A in working shape C, Euclidean
transformations are used, e.g. translation and rotation, to find
more possible matches. Further, parametric spatial grammars
allow for more generic shape rules to be described where parame-
ter values are then also determined in the matching process.
Recent reviews of shape grammar implementations and inter-
preters can be found in Refs. [108, 109]. While interpreters for
graph grammars are well underway stemming from the strong
foundation coming from computer science research, similar level
shape grammar interpreters generally lag behind.

An interactive, 3D shape grammar interpreter has recently been
developed by Hoisl and Shea [109] that is integrated with an
open-source CAD system and geometric modeling kernel. It takes a
set grammar approach defining a vocabulary of parameterized
primitives with which both parametric and nonparametric rules
can be developed graphically, making use of common CAD func-
tions for creating and editing geometric objects. To support auto-
matic rule application, it provides automatic matching of the LHS
of rules and automatic application of rules including arbitrary
rotations and translations in combination with assigning parameter
values and adhering to defined parametric relations. The system
has been successfully applied to generate vehicle wheel rims and
cooling fin designs. While limited to 3D primitives, it is a step to-
ward providing a general shape grammar interpreter within a fa-
miliar CAD environment.

Shape grammars are often known most for their use of a maxi-
mal line representation to enable the detection of sub-shapes, that
is shapes that emerge through shape calculation but are not explic-
itly represented, e.g., as when using a set grammar. For conceptual
design, recognition and transformation of emergent shapes is an
ultimate goal as it enables a wider variety of shape designs to be
generated, some creative even, that a designer would or could not
produce by hand. A leading system for 3D shape grammars [108]
uses a maximal line representation approach that can handle
straight and curvilinear basic elements in 3D space. The shapes
and rules are created and edited in an external text file and applied
to generate wireframelike shapes. The matching of the LHS,
including sub-shape recognition, is carried out automatically
where the transformation is given by the user.

An engineering approach to parametric subshape recognition
was introduced by McCormack and Cagan [110,111], achieved
through a decomposition of shapes into a hierarchy of subshapes
ordered by their decreasing restrictions. Instances of each sub-
shape are individually located in the design shape and then recon-
structed to form an instance of the entire shape. The basis for the
hierarchy of subshapes can be specified by the designer or based
on default spatial relations that come from architectural and engi-
neering knowledge. The levels of the hierarchy are defined so that
the most constrained lines of a shape are those lines that the de-
signer intended exactly. The less constrained segments require
more extensive search but the more specific instances have been
filtered out already, reducing search requirements. A two-step pro-
cess that uses Bézier curves enables curve-based matches as well.

Another key recent development in the area of subshape detection
is reported in Ref. [112] who take a different approach by recogniz-
ing that the problem is similar to that of object recognition in com-
puter vision. Their main contribution is a pixel-based, 2D represen-
tation that matches the LHS of a rule to a working shape by
determining the visual similarity between the two using the Haus-
dorff distance, which is a distance metric for point sets. Since the
method is not based on an explicit geometric model, all shapes that
can be represented through pixels can be considered, coming from
CAD models or sketch-based input. While this is the main advantage
of the approach, which also allows inexact matches using a toler-
ance variable, a design can get “messy” after applying several rules
making further rule applications not possible after much iteration.

Genesis is currently the only known commercially used spatial
grammar system implemented at Boeing [113]. It is based on the
original shape grammar system that was developed to generate al-
ternative Queen Anne style houses [114]. It is used to support the
interactive generation of tubing designs in aircrafts to enable engi-
neers to explore solution spaces as well as evaluate, compare and
merge design alternatives. A 3D boundary solid shape representa-
tion is extended to include hierarchical assembly structures and
interfaces, part classification and functional schematics. Design
rules are formulated through matching conditions and design
transformations, rather than as replacement rules.

3.3 Learning Generative Grammars. An emerging area of
importance is the learning of grammar rules. In practice today,
grammar rules must be “knowledge engineered”, namely a person
must determine what the important features are for design genera-
tion and how to formulate the rules. Engineering grammars would
be more readily applied if rules could be learned and adapted on
their own.

Yogev et al. [115] evolved rules within the DNA or genome of
the genetic structure embedded within an initial cell. The evolu-
tion modifies the sequence of basic rules creating meta-rules that
dictate how a structure is configured or built. The meta-rule is
influenced by environmental conditions and mutations in the rule
sequence itself. This work is demonstrated on the design of a
structure that evolves to an optimum configuration. The advantage
of this approach is that sophisticated rules can evolve from
smaller rules based on the environmental conditions.

021003-4 / Vol. 11, JUNE 2011 Transactions of the ASME

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A different approach to rule learning has been developed for
use when the sample or class of products exist from which rules
should be learned to generate designs primarily within that class
(although the resulting rules can be used outside of the given para-
metric range as well). Orsborn et al. [116,117] introduced a statis-
tical approach to rule generation whereby a data set of products
(in their case vehicles) was analyzed by principal component anal-
ysis (PCA) to determine similarities and differences between
products in the data set. The analysis is based on a general curve-
based representation for the class of products, where the curve
control points are the data that are analyzed. Each successive
component of the PCA provides the most to least variation in a
given dimension of a product. Rules are built based on the curves
highlighted in the analysis. Of note, the rules are based on what
actually has the most variation, not what people describe as dis-
crete components in a product.

Both of these approaches were successful and show promising
directions for rule learning. This is clearly a ripe area for future
research, an area that could significantly impact the breadth of appli-
cation and use of engineering grammars for conceptual design.

3.4 Key Issues for Generative Grammars. At a recent con-
ference workshop (see http://www2.mech-eng.leeds.ac.uk/users/
men6am/DCC10-SG-Implementation-Workshop.htm), several
key issues were identified to take shape grammars from theory to
useable software. These issues apply to all generative grammars
and are summarized here: (1) supporting designers to articulate
grammars (i.e., vocabulary and rules) in software implementa-
tions, (2) defining ways to evaluate implementations, including
identifying a set of benchmark problems, (3) better integration of
generative grammar implementations with other software, e.g.,
CAD and CAE and (4) more methodological support for users in the
process of defining a grammar since this process can also lead to
better understanding of a design problem.

Stemming from the last point, a final issue that needs further
attention in the research community relates to education, which
has also been considered previously by Knight [118]. Generative
grammars are taught only at a relatively small, although growing,
number of universities. However, they have great potential since
their design and application requires formalization of design
knowledge and developing a sound description of the problem to
generate potential solutions. Further, they can foster design explo-
ration and better understanding of the solution space. To support
education, good software implementations and grammar inter-
preters are one prerequisite. The challenge is also to foster interest
in the area and the building of the right mix of technical, spatial,
and intellectual abilities for their effective use.

4 Design by Analogy

Whether through formal or informal methods, designers often
develop conceptual designs that draw inspiration from previous
design knowledge [57–61]. However, this inspiration approach, a
form of analogy-based design, still lacks widespread computa-
tional support. Hindering its application is the fact that analogies
are difficult to retrieve from memory [119]. This section discusses
three overlapping research areas that are centered around analogy:
analogy based design (ABD), case based design (CBD), and
biologically inspired design (BID). ABD provides the broad um-
brella, where designing involves identifying and transferring rele-
vant knowledge, from the same or different domains, to solve
design problems. CBD is a sub-area within case based reasoning
(CBR), and solves problems by primarily focusing on identifying
and adapting knowledge from within domain. BID solves prob-
lems by identifying and transferring knowledge from biological
domain.

4.1 Analogy Based Design. Wikipedia describes analogy “as
a cognitive process of transferring information from a particular

subject (the analogue or source) to another particular subject (the
target), and a linguistic expression corresponding to such a proc-
ess.” Analogy is valuable for design; one of the first ABD meth-
ods was Gordon [120]. Analogical reasoning is traditionally
categorized in terms of why, what, how and when [121], focusing
on the content of knowledge that makes analogical transfer feasi-
ble, describing different types of analogies along these dimen-
sions. In ABD, the why question focuses on the task for which
analogy is used; the what question on the content of knowledge
transferred; the how question on the methods for reminding and
transfer; and the when question on strategic control of processing.

Analogical transfer requires the use of generic abstractions,
which express the structure of relationships between generic types
of objects and processes [121]. For a design process to be analogi-
cal, the knowledge transferred from a source case to the target
problem must be an abstract relationship between objects and not
simply an object attribute [122]. As an example of the necessary
abstraction, the mechanism of structure-mapping [57,122] is
essentially independent of task or domain, size of problem or tim-
ing of problem solving, content of knowledge, or modality of
knowledge representation. ABD involves learning and transfer of
these abstractions from one design situation to another, where the
abstractions specify the structure of relations among the elements
of a design problem, solution, domain, or strategy, and where
transfer can occur to fulfill any design task in the new situation.

To answer the how question of methods of analogical transfer,
case-based methods are common for within-domain analogies, see
Sec. 4.2. For cross-domain analogical transfer in computational
design, various models such as schema-based model [123] is used
in which knowledge is transferred from a source case to a target
problem by abstracting the solution schema. The abstract problem
schema serves as a retrieval cue for finding a solution schema that
provides a solution to the target problem. In computational design,
the IDEAL system [61,124] (see further below in this section)
uses this method for the conceptual design.

Various descriptive studies are undertaken to understand the
ABD process. Gero and Maher [125] studied its cognitive proc-
esses; Davies and Goel [126] studied visual aspects of analogical
transfer; Tseng et al. [127] identified the types of analogies that
impact design creativity; McAdams and Wood [128] developed a
similarity metric for comparing designs produced by analogy;
Wiratunga et al. [129] studied learning strategies used in adapting
design cases; Christensen and Schunn [60] identified the functions
served by analogy in designing novel design concepts.

A variety of systems for design by analogy are developed for
problem formulation and function analysis, mainly using natural
language processing e.g. [130–133]. It is also used for improve-
ment of designs for characteristics other than function, e.g., For
instance, Balazs and Brown [134] developed a computational
approach for design simplification.

The biggest chunk of work in this area focuses on using analogy
to fulfill intended functionality. Goel [121] speaks of three distinct
theories of analogical design: based on Syn [135], Dssua [136],
and Ideal [137]; they, respectively, illustrate three kinds of generic
abstractions in analogy-based creative design: design concepts,
design prototypes, and design patterns.

Syn is a module within a CAD environment for assisting archi-
tects in designing spatial layouts of buildings; the basic process
classifies a given design problem into a library of stored design
concepts, retrieves the best matching concept, and instantiates the
concept in the context of the problem to generate a candidate
solution.

Dssua is an interactive system to address mechanical design
problems within architectural designs. It stores knowledge of fa-
miliar designs as design prototypes [43], using the function-
behavior-structure model. Transfer is based on similarity between
the structures of the dependency graphs abstracted from the design
prototypes and the initial solutions specified as part of design
problems. Further, Kulinski and Gero [138] proposed a model for
situated analogy in design.

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021003-5

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ideal uses model based analogy for conceptual design of engi-
neering devices. It contains several kinds of domain knowledge:
design analogues, design patterns, design concepts, generic design
components, and generic domain substances. Design analogues
are expressed using structure-behavior-function model. For trans-
fer, IDEAL develops adaptation goals in terms of the differences
between the functions of the new and the retrieved designs, and
refines the new design by reducing these differences, thereby gen-
erating new designs through analogical transfer of design patterns
acquired from earlier design episodes.

4.2 Case Based Design. CBR involves “adapting old solu-
tions to meet new demands, using old cases to explain new situa-
tions, using old cases to critique new solutions, or reasoning from
precedents to interpret a new situation.” Kolodner [139]. CBR is a
limiting case of analogical reasoning in which the question of
what to transfer translates into that of what to modify [121]. CBD
is “the process of creating a new design solution by adapting and/
or combining previous design solutions” [140].

Many reviews of CBR exist, e.g., [139–144]. CBR techniques
are a progression from knowledge based systems, with the goal of
alleviating some of their traditional issues with knowledge elicita-
tion, implementation and maintenance [145].

In case-based methods, a designer attempting to solve a target
problem is first reminded of a similar source problem for which
the solution is known. Then the target problem can be solved by
transferring and adapting the source problem solution for the tar-
get problem e.g., [5,22,24]. Aamodt and Plaza [142] describe
CBR as a cyclical process comprising four REs: RETRIEVE simi-
lar cases; REUSE the cases to solve the problem; REVISE the
proposed solution if necessary, and RETAIN the new solution as
part of a new case. For CBD, the first three steps translate to pro-
pose, critique, and modify [146]. This cycle rarely occurs without
human intervention: CBR tools primarily support case retrieval
and reuse, while case revision or adaptation is mainly carried out
by humans [146].

The work on scripts by Schank and Abelson [147] probably
started CBR. Schank produced a cognitive model for CBR based
on the concept of dynamic memory; Kolodner [148,149] used this
to develop the first CBR system CYRUS. Some of the early CBD
systems [140] are CYCLOPS [150] and STRUPLE [151].

A case is a contextualized piece of knowledge representing an
experience, which typically contains the problem that describes
the state of the world when the case occurred, the solution that
states the derived solution to that problem, and/or the outcome
which describes the state of the world after the case occurred
[145]. Case indexing involves assigning indices to cases to facili-
tate retrieval. The case-base should be organized to provide both
semantic richness of cases and their indices, and methods that
simplify case access and retrieval. These methods are called case
memory models; the two most influential are the dynamic mem-
ory model [148,149,152], and the category-exemplar model [153].
Given the description of a problem, retrieval involves using the
indices in the case-memory to retrieve cases similar to the current
problem. Retrieval algorithms include: heuristic/analogical [154],
serial search [155], hierarchical search [156], and simulated paral-
lel search [157]. Adaptation involves modifying the solution
stored in the retrieved case to the needs of the current case; Avra-
menko and Kraslawski [158] summarize two approaches–struc-
tural adaptation and derivational adaptation, and a various
adaptation techniques ranging from no adaptation to case-based
substitution. Kolodner [139] specifies two further methods: substi-
tution methods and special purpose methods. However, automated
case adaptation is particularly difficult.

4.3 Biologically Inspired Design. Biological systems
resource-effectively fulfill various tasks within a variety of envi-
ronments and constraints; many of these are similar to those in en-
gineering design. Therefore, biological systems offer a rich source

of inspiration for design [159]. BID (also termed biomimicry or
biomimetics) is an emerging area in which ABD is carried out
with biological systems as analogues. Wikipedia defines biomi-
metics as the examination of nature, its models, systems, proc-
esses, and elements to emulate or take inspiration from in order to
solve human problems.

Biologically inspired designs have traditionally been an out-
come of individual interest, accidental exposure, or systematic
study [156]. Cross-domain inspiration is found to be a valuable
source for analogical transfer [160]. However, understanding the
BID process and supporting this systematically is only beginning
to be researched.

Descriptive BID studies are relatively few. Helms et al. [161]
analyzed processes in BID projects, and found that both solutions
and problem decompositions were transferred in BID. Compound
solutions were generated using both analogy and problem decom-
position Vattam et al. [162]. Arguing that current understanding
of the analogical basis of BID is limited; Vattam et al. [163] ana-
lyzed BID processes to develop a model of using creative analo-
gies in BID. Sartori et al. [164] analyzed biomimetic design cases
to identify a generic set of abstraction levels at which biomimetic
transfer occur in design.

Prescriptive studies in BID include developing biomimetic proc-
esses, databases, guidelines, tools, and applications. Hill [165,166]
proposed an orientation model for biomimetics that involved goal
setting and solution identification. Schild et al. [167] proposed a sys-
tematic approach for identifying biological analogues for a given
problem. Gramann [168] proposed a biomimetic process to support
technical problem solving. Based on analysis of such models, Sar-
tori et al. [165] proposed a generic model of the biomimetic process
with these steps: formulate search objectives; search for biological
analogues; analyze them; and transfer.

Databases of biological systems developed to support BID
include: catalogue sheets [165,166] that capture knowledge about
biological structures and functions; a database of biological effects
structured using TRIZ [169,170]; a database of biological systems
structured using the SAPPhIRE model of causality [49]; function-
based approaches [171], SBF based approaches [172], and
approaches using reverse engineering and ontologies [173,174].

A contrasting approach is proposed by Hacco and Shu [e.g.,
175] where methods are developed to use natural language proc-
essing to extract biological information available in documents in
natural-language format; designers can apply analogical reasoning
to transfer this knowledge to the target domain, see [176] for a
review of these.

According to Chakrabarti and Shu [159], both these approaches
have their (de-)merits. While the latter approach requires undertak-
ing neither the structuring effort nor the effort of populating a data-
base using this structure, effort must be invested in developing
appropriate search strategies for locating meaningful information
from the plethora of existing knowledge sources available in natu-
ral-language format. The former approaches, in contrast, require
investing substantial effort into prestructuring information, and
entering a meaningful quantity of information using that structure,
for subsequent benefits of easier and more focused search.

Guidelines are proposed: for biomimetic transfer [165] and
composition of biological systems [161]. Several software tools
are developed, e.g. IDEA-INSPIRE [49,177,178], DANE [172],
etc. Various biomimetic applications are developed, e.g., an
Eel-like swimming robot [179] and a millipede-inspired multi-
tracked rover with high obstacle climbing performance [180].

4.4 Key Challenges in Design by Analogy. Two major chal-
lenges remain in computational design by analogy research: how to
(automatically) identify what analogical material is relevant for a
given design problem, and how to (automatically) transfer these to
solve the problem. In the context of biologically inspired design,
developing a meta-language with which the source and target
domains can be expressed and mapped remains a major challenge.

021003-6 / Vol. 11, JUNE 2011 Transactions of the ASME

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5 Discussion and Conclusions

A major goal of design synthesis is to support creation of a
large number of alternatives of high value. The review shows a
wide variety of methods proposed to help with generation of alter-
native problem specifications, a wider variety of design alterna-
tives to fulfill these, and some methods for their evaluation and
improvement.

Several major sub-themes emerge within each theme. Function-
based synthesis methods cluster around the notion of common,
generic functions for problem decomposition, and those that boot-
strap function and means to move from abstract, overall functions
to concrete, overall solutions. Grammar based synthesis methods
have two major sub-themes: graph grammars and spatial gram-
mars, both of which define languages of design that can be used to
interactively or automatically generate routine and novel design
solutions. They intersect with function-based synthesis methods
since graph grammars in particular are an effective means to gen-
erate concepts starting from a high-level function model down to
product structure and component generation. At the component-
level, spatial grammars can be integrated to generate both
standard and complex forms within a specified design language.
Analogy-based design focuses on case-based reasoning (mainly
in-domain) and analogical reasoning (mainly cross-domain)
approaches, where the latter draws inspiration increasing in the
emergent theme of biologically inspired design. It is analogy-
based design where the function- and grammar-based design
approaches may hold the most promise at improving the knowl-
edge transfer from source to target case.

In the last decades, much theory has been laid and research
methods developed for computer-based design synthesis, as
reviewed in this paper. However, major challenges remain, which
are summarized here to drive further research:

• A commonly accepted terminology and language for the field
is still needed to foster exchange of research models, methods
and results.

• In biologically inspired design specifically, developing a
meta-language for expressing both source and target domains
remains a major challenge, as does the structuring analogical
materials.

• While analogy-based design has taken great strides in re-
trieval research, adaptation still remains a major challenge,
the difficulty accentuated by the context-specificity of the
possible adaptation options.

• Exploration of large solution spaces created by design syn-
thesis methods can be overwhelming, and further research is
needed on appropriate and effective search, evaluation and
optimization methods.

• Supporting designers to formalize their knowledge of synthe-
sis in software implementations is a long standing issue
shared with early expert systems and current knowledge
management.

• Rigorous means for evaluating synthesis systems, including
common benchmark cases and criteria for assessing quality,
is needed.

• Synthesis systems need to be scaled-up to support problem
solving at the levels of complexity expected in practice.

• Finally, a better understanding is needed for how synthesis
systems can be integrated in current design processes in prac-
tice and with current toolsets.

Research is currently underway by the authors and the research
community at large to address these in order to push computa-
tional design synthesis toward use in everyday design practice.

Acknowledgment

The second author thanks the Deutsche Forschungsgesellschaft
(DFG) for funding their research in this area as a part of the col-
laborative research centre “Managing cycles in innovation proc-

esses – Integrated development of product service systems based
on technical products” (SFB 768).

References
[1] Chakrabarti, A., Morgenstern, S., and Knaab, H., 2004, “Identification and

Application of Requirements and Their Application on the Design Process: A
Protocol Study,” Res. Eng. Des., 15(1), pp. 22–39.

[2] Pahl, G., and Beitz, W., Engineering Design: A Systematic Approach
(Springer Verlag, London, 1996).

[3] Otto, K., and Wood, K. L., Product Design: Techniques in Reverse Engineer-
ing, Systematic Design, and New Product Development (Prentice-Hall, New
York, 2001).

[4] Ullman, D. G., 2002, The Mechanical Design Process, 3rd ed., McGraw-Hill,
New York.

[5] Ulrich, K. T. and Eppinger, S. D., 2004, Product Design and Development,
3rd ed., McGraw-Hill/Irwin, Boston.

[6] Cutherell, D., 1996, “Chapter 16: Product Architecture,” The PDMA Hand-
book of New Product Development, M. Rosenau, Jr., ed., Wiley, New York.

[7] Hubka, V., and Ernst Eder, W., Theory of Technical Systems (Springer-Verlag,
Berlin, 1984).

[8] Otto, K., and Wood, K., 1996, “A Reverse Engineering and Redesign Method-
ology for Product Evolution,” Proceedings of the 1996 ASME Design Theory
and Methodology Conference, 96-DETC/DTM-1523, Irvine, CA.

[9] Otto, K., and Wood, K., 1997, “Conceptual and Configuration Design of Prod-
ucts and Assemblies,” ASM Handbook, Materials Selection and Design, ASM
International.

[10] Pimmler, T., and Eppinger, S., 1994, “Integration Analysis of Product Decom-
positions,” Proceedings of the ASME Design Theory and Methodology Con-
ference, DE-Vol. 68.

[11] Schmidt, L., and Cagan, J., 1995, “Recursive Annealing: A Computational
Model for Machine Design,” Res. Eng. Des., 7(2), pp. 102–125.

[12] Shimomura, Y., Tanigawa, S., Takeda, H., Umeda, Y., and Tomiyama, T.,
1996, “Functional Evaluation Based on Function Content,” Proceedings of the
1996 ASME Design Theory and Methodology Conference, 96-DETC/DTM-
1532, Irvine, CA.

[13] Radcliffe, D., and Lee, T. Y., 1989, “Design Methods Used by Undergraduate
Engineering Students,” Des. Stud., 10(4), pp. 199–207.

[14] Cross, N., 1994, Engineering Design Methods: Strategies for Product Design,
2nd ed., John Wiley and Sons, Chichester, UK.

[15] Ivashkov, M., 2004, “ACCEL: A Tool Supporting Concept Generation in the
Early Design Phase,” Ph. D. thesis, The Eindhoven University of Technology,
Eindhoven, The Netherlands.

[16] Wodehouse, A., Grierson, H., Ion, W. J., Juster, N., Lynn, A., and Stone, A.
L., 2004, “Tikiwiki: A Tool to Support Engineering Design Students in Con-
cept Generation,” International Engineering and Product Design Education
Conference, Delft, Netherlands.

[17] Sridharan, P., and Campbell, M., 2005, “A Study on the Grammatical Con-
struction of Function Structures,” Artif. Intell. Eng. Des. Anal. Manuf., 19(3),
pp. 139–160.

[18] Du, X., and Chen, W., 2004, “Sequential Optimization and Reliability Assess-
ment for Probabilistic Design,” J. Mech. Des., 126, pp. 225–233.

[19] Chakrabarti, A., 1998, “Supporting two Views of Function in Mechanical
Design, Workshop on Functional Modeling and Teleological Reasoning,” 15th
AAAI National Conference on Artificial Intelligence, WI.

[20] Chandrasekaran, B., and Josephson, J. R., 2000, “Function in Device Repre-
sentation,” Eng. Comput., 16(3–4), pp. 162–177.

[21] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K. H., 2007, Engineering
Design: A Systematic Approach, 3rd ed., Springer Verlag, London.

[22] Otto, K., and Wood, K., Product Design: Techniques in Reverse Engineering, Sys-
tematic Design, and New Product Development (Prentice-Hall, New York, 2001).

[23] Miles, L., Techniques of Value Analysis and Engineering (McGraw-Hill, New
York, 1961).

[24] Dieter, G., 1991, Engineering Design: A Materials and Processing Approach,
2nd ed., McGraw-Hill, New York.

[25] Ullman, D. G., The Mechanical Design Process (McGraw-Hill, New York, 2002).
[26] Cutherell, D., Chapter 16: Product Architecture (Wiley, New York, 1996).
[27] Rodenacker, W., Methodisches Konstruieren (Methodical Design) (Springer,

New York, 1971).
[28] Roth, K., Konstruieren mit Konstrktionskatalogen (Design with Construction

Catalogs) (Springer Verlag, Berlin, 1982).
[29] Koller, R., Konstruktionslehre für den Maschinenbau (Mechanical Engineer-

ing Design), (Springer-Verlag, Berlin, 1985).
[30] Pahl, G., and Beitz, W., 1984, Engineering Design: A Systematic Approach

Design Council, London.
[31] Hundal, M., 1990, “A Systematic Method for Developing Function Struc-

tures, Solutions and Concept Variants,” Mech. Mach. Theory, 25(3), pp.
243–256.

[32] Little, A., Wood, K., and McAdams, D., 1997, “Functional Analysis: A Funda-
mental Empirical Study for Reverse Engineering, Benchmarking and
Redesign,” Proceedings of the 1997 Design Engineering Technical Conferen-
ces, 97-DETC/DTM-3879, Sacramento, CA.

[33] Szykman, S., Racz, J., and Sriram, R., 1999, “The Representation of Function
in Computer-Based Design,” ASME Design Engineering Technical Conferen-
ces and Computers and Information in Engineering Conference, DETC99/
DTM-8742, Las Vegas, NV.

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021003-7

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1007/s00163-003-0033-5
http://dx.doi.org/10.1007/BF01606905
http://dx.doi.org/10.1115/1.1649968
http://dx.doi.org/10.1007/s003660070003
http://dx.doi.org/10.1016/0094-114X(90)90027-H


[34] Stone, R., and Wood, K., 2000, “Development of a Functional Basis for
Design,” J. Mech. Des., 122(4), pp. 359–370.

[35] Hirtz, J., Stone, R., McAdams, D., Szykman, S., and Wood, K., 2002, “A
Functional Basis for Engineering Design: Reconciling and Evolving Previous
Efforts,” Res. Eng. Des., 13(2), pp. 65–82.

[36] Chakrabarti, A., and Bligh, T. P., 2001, “A Scheme for Functional Reasoning
in Mechanical Conceptual Design,” Des. Stud., 22(6), pp. 493–517.

[37] Chakrabarti, A., 1997, “Deep Understanding and Problem Solving Using
Function Structures: A Case Study,” Proceedings International Conference in
Engineering Design, Tampere, Vol. 3, pp. 71–76.

[38] Andreasen, M. M., 1980, “Syntesemetoder på systemgrundlag,” Ph.D. thesis
in Lunds Tekniska Högskola.

[39] Freeman, P., and Newell, A, 1971, “A Model for Functional Reasoning in
Design,” Advanced Papers IJCAI’71, London, pp. 621–640.

[40] Bracewell, R. H., Chaplin, R. V., Langdon, P. M., Li, M., Oh, V. K., Sharpe, J.
E. E., and Yan, X. T., “Integrated Platform for AI Support of Complex Design
(Part I): Rapid Development of Schemes from First Principles,” CACD’95,
Springer-Verlag, Lancaster, 1995.

[41] Sturges, R. H., O’Shaughnessy, K. O., and Kilam, M. I., 1996, “Computational
Model for Conceptual Design Based on Extended Function Logic,” Artif.
Intell. Eng. Des. Anal. Manuf., Vol. 10(4), pp. 225–274.

[42] Chakrabarti A., and Bligh, T. P., 1996, An Approach to Functional Synthesis
of Design Concepts: Theory, Application, and Emerging Research Issues,
Artif. Intell. Eng. Des. Anal. Manuf., 10(4), pp. 313–331.

[43] Liu, Y. C., Chakrabarti, A., and Bligh, T. P., 2000, “A Computational Frame-
work for Concept Generation and Exploration in Mechanical Design: Further
Developments of FuncSION,” Artificial Intelligence in Design (AID’00), J.
Gero and F. Sudweeks eds., pp. 499–519.

[44] Gero, J. S., 1990, “Design Prototypes: A Knowledge Representation Schema
for Design,” AI Mag., 11(4), pp. 26–36.

[45] Goel, A. K., 1991, “A Model Based Approach to Case Adaptation,” Proceed-
ings 13th Annual Conference of the Cognitive Science Society, Aug. 1991,
Chicago, pp. 143–148.

[46] Y. Umeda, M. Ishii, M. Yoshioka, Y. Shimomura and T. Tomiyama, 1996,
“Supporting Conceptual Design Based on the Function–Behaviour–State Mod-
eler,” Artif. Intell. Eng. Des. Anal. Manuf., 10, pp. 275–288.

[47] Deng, Y.-M., Britton, G. A., and Tor, S. B., 2000, “Constraint-Based Func-
tional Design Verification for Conceptual Design,” Comput.-Aided Des., 32,
pp. 889–899.

[48] Vargas-Hernandez, N., and Shah, J. J., 2004, “2nd-CAD: A Tool for Concep-
tual Systems Design in Electromechanical Domain”, ASME J. Comput. Inf.
Sci. Eng., 4(1), pp. 28–36.

[49] Chakrabarti, A., Sarkar, P., Leelavathamma, B., and Nataraju, B. S., 2005“A
Functional Representation for Aiding Biomimetic and Artificial Inspiration of
New Ideas,” Artif. Intell. Eng. Des. Anal. Manuf., 19(2), pp. 113–132.

[50] Erden, M. S., Komoto, H., Van Beek, T. J., D’Amelio, V., Echavarria, E., and
Tomiyama, T., 2008, “A Review of Functional Modeling: Approaches and
Applications,” Artif. Intell. Eng. Des. Anal. Manuf., 22(2), pp. 147–169.

[51] Chandrasekaran, B., 1994, “Function Representation and Causal Processes,”
Adv. Comput., 38, pp. 73–143.

[52] Chakrabarti, A., and Blessing, L., 1996, “Special Issue: Representing Func-
tionality in Design,” Artif. Intell. Eng. Des. Anal. Manuf., 10(4), pp. 251–253.

[53] Winsor, J., and MacCallum, K., 1994, “A Review of Functionality Modelling
in Design,” Knowl. Eng. Rev., 9, pp. 163–199.

[54] Stone, R. B., and Chakrabarti, A., 2005, “Special Issue: Engineering Applica-
tions of Representations of Function–Part 1,” Artif. Intell. Eng. Des. Anal.
Manuf., 19(3), pp. 137–137.

[55] Far, B. H., and Elamy, A. H., “Functional Reasoning Theories: Problems and
Perspectives,” Artif. Intell. Eng. Des. Anal. Manuf., 19(2), pp. 75–88.

[56] Chakrabarti, A., ed., Design Synthesis: Issues, Understanding and Methods
(Springer-Verlag, London, 2002).

[57] Falkenhainer, B., Forbus, K., and Gentner, D., 1989, “The Structure-Mapping
Engine: Algorithms and Examples,” Artif. Intell., 41(1), pp. 1–63.

[58] Clement, J., 1988, “Observed Methods for Generating Analogies in Scientific
Problem Solving,” Cogn. Sci., 12(4), pp. 563–586.

[59] Clement, J., “Creative Model Construction in Scientists and Students: The Role
of Imagery, Analogy, and Mental Simulation (Springer, Dordrecht, 2008).

[60] Christensen, B. T., and Schunn, C. D., 2007, “The Relationship of Analogical
Distance to Analogical Function and Pre-Inventive Structure: The Case of En-
gineering Design,” Mem. Cognit., 35(1), pp. 29–38.

[61] Goel, A., and Bhatta, S., 2004, “Design Patterns: An Unit of Analogical Trans-
fer in Creative Design,” Adv. Eng. Inf., 18(2), pp. 85–94.

[62] Bohm, M., Stone, R., and Szykman, S., 2005, “Enhancing Virtual Product
Representations for Advanced Design Repository Systems,” J. Comput. Inf.
Sci. Eng., 5(4), pp. 360–372.

[63] Szykman, S., Sriram, R., and Regli, W., 2001, “The Role of Knowledge in
Next-generation Product Development Systems,” J. Comput. Inf. Sci. Eng.,
1(1), pp. 3–11.

[64] Szykman, S., Fenves, S., Keirouz, W., and Shooter, S., 2001, “A Foundation
for Interoperability in Next-Generation Product Development Systems,” Com-
put.-Aided Des., 33(7), pp. 545–559.

[65] Bohm, M., Stone, R., Simpson, T., and Steva, E., 2008, “Introduction of a
Data Schema: To Support a Design Repository,” Comput.-Aided Des., 40(7),
pp. 801–811.

[66] Bryant, C., McAdams, D., Stone, R., Kurtoglu, T., and Campbell, M., 2005,
“A Computational Technique for Concept Generation,” Proceedings of
IDETC/CIE 2005, DETC2005-85323, Long Beach, CA.

[67] Bryant, C., Stone, R., McAdams, D., Kurtoglu, T., and Campbell, M., 2005,
“Concept Generation from the Functional Basis of Design,” International Con-
ference on Engineering Design, ICED 05, Melbourne, Australia.

[68] Shooter, S., Simpson, T., Kumara, S., Stone, R., and Terpenny, J., 2005,
“Toward a Multi-Agent Information Management Infrastructure for Product
Family Planning and Mass Customisation,” Int. J. Mass Customisation, 1(1),
pp. 134–155.

[69] Regli, W., Kopena, J., Grauer, M., Simpson, T., Stone, R., Lewis, K., Bohm,
M., Wilkie, D., Piecyk, M., and Osecki, J., 2010, “Archiving the Semantics of
Digital Engineering Artifacts: A Case Study,” AI Mag., 31, pp. 37–50.

[70] Bohm, M., Vuchovich, J., and Stone, R., 2007, “An Open Source Application
for Archiving Product Design Information,” Proceedings of DETC’07,
DETC2007-35401, Las Vegas, NV.

[71] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and McAdams, D., 2009,
“A Component Taxonomy as a Framework for Computational Design Syn-
thesis,” ASME J. Comput. Inf. Sci. Eng., 9(1), p. 011007.

[72] Bohm, M., Vucovich, J., and Stone, R., 2005, “Capturing Creativity: Using a
Design Repository to Drive Concept Innovation,” Proceedings of IDETC/CIE
2005, DETC2005-85105, Long Beach, CA.

[73] Bohm, M. R., Vucovich, J. P., and Stone, R. B., 2008, “Using a Design Repos-
itory to Drive Concept Generation,” J. Comput. Inf. Sci. Eng., 8(1), pp.
014502.

[74] Kurtoglu, T., and Campbell, M., 2008, “Automated Synthesis of Electrome-
chanical Design Configurations from Empirical Analysis of Function to Form
Mapping,” J. Eng. Des., 20(1), pp. 83–104.

[75] Kurtoglu, T., Campbell, M., Gonzalez, J., Bryant, C., Stone, R., and McA-
dams, D., 2005, “Capturing Empirically Derived Design Knowledge for Creat-
ing Conceptual Design Configurations,” Proceedings of IDETC/CIE 2005,
DETC2005-84405, Long Beach, CA.

[76] Chakrabarti, A., Johnson, A. L., and Kiriyama, T., 1997, An Approach to
Automated Synthesis of Solution Principles for Micro-Sensor Designs, Pro-
ceedings of the International Conference in Engineering Design, Tampere,
Vol. 2, pp. 125–128.

[77] Navinchandra, D., Sycara, K. P., and Narasimhan, S., 1991, “A Transforma-
tional Approach to Case-Based Synthesis,” Artif. Intell. Eng. Des. Anal.
Manuf., 5, pp. 31–45.

[78] Subramanian, D., and Wang, C.-S., 1995, “Kinematic Synthesis with Configu-
ration Spaces,” Res. Eng. Des., 7(3), pp. 193–213.

[79] Williams, B. C., 1990, “Interaction-Based Invention: Designing Novel Devi-
ces from First Principles,” AAAI-90 Proceedings Eighth National Conference
on Artificial Intelligence, Vol. 1, Boston, MA.

[80] Palmer, R. S., and Shapiro, V., 1993, “Chain Models of Physical Behavior for
Engineering Analysis and Design,” Res. Eng. Des., 5, pp. 161–184.

[81] Mittal, S., Dym, C., and Morjara, M., 1985, “PRIDE: An Expert System for
the Design of Paper Handling Systems,” IEEE Comput., 19(7), pp. 102–114.

[82] Chakrabarti, A., 2001, “Improving Efficiency of Procedures for Computational
Synthesis by Using Bidirectional Search,” Artif. Intell. Eng. Des. Anal.
Manuf., 15(5), pp. 67–80.

[83] Liu, Y. C., and Chakrabarti, 2010, A. “Investigation of Design Heuristics for
Pruning the Number of Mechanism Solutions in Computer-Based Conceptual
Design,” 2nd International Conference on Computer and Automation Engi-
neering (ICCAE 2010), Feb. 26–28, Singapore.

[84] Chakrabarti, A., and Johnson, A. L., 1999, “Detecting Side Effects in Solution
Principles,” Procedings of the International Conference on Engineering
Design (ICED99), Munich, Vol. 2, pp. 661–666.

[85] Langdon, P., and Chakrabarti, A., 1999, “Browsing a Large Solution Space in
Breadth and Depth,” Proceedings of the International Conference on Engi-
neering Design (ICED99), Munich, Vol. 3, pp. 1865–1868.

[86] Ulrich, K. T., and Seering, W. P., 1988, “Function Sharing in Mechanical
Design,” AAAI-88 Proceedings, pp. 342–346.

[87] Chakrabarti, A., 2004, “A New Approach to Structure Sharing,” ASME J.
Comput. Inf. Sci. Eng., 1(1), pp. 1–78.

[88] Fricke, G., 1996, “Successful Individual Approaches in Engineering Design,”
Res. Eng. Des. 8, pp. 151–165.

[89] Liu, Y-C., Chakrabarti, A., and Bligh, T. P., 2003, “Towards an Ideal
Approach for Concept Generation,” Des. Stud., 24(4), pp. 341–355.

[90] Bryant, C., Pieper, E., Walther, B., Kurtoglu, T., Stone, R., McAdams, D., and
Campbell, M., 2006, “Software Evaluation of an Automated Concept Genera-
tor Design Tool,” Proceedings of the 2006 ASEE Annual Conference, ASEE-
2006-1758, Chicago, IL.

[91] Bryant, C., McAdams, D., Stone, R., Kurtoglu, T., and Campbell, M., 2006,
“A Validation Study of an Automated Concept Generator Design Tool,” Pro-
ceedings of IDETC/CIE 2006, DETC2006-99489, Philadelphia, PA.

[92] Kurtoglu, T., and Campbell, M., 2007, “Exploring the Worth of Automatically
Generated Design Alternatives Based on Designer Preferences,” International
Conference on Engineering Design, Paris, France.

[93] Gips, J., and Stiny, G., 1980, “Production Systems and Grammars: A Uniform
Characterization,” Environ. Plann. B, 7, pp. 399–408.

[94] Krishnamurti, R., and Stouffs, R., 1993, Spatial Grammars: Motivation, Compar-
ison, and New Results, 5th International Conference on Computer-Aided Archi-
tectural Design Futures, North-Holland Publishing Co., Pittsburgh, pp. 57–74.

[95] Antonsson, E. K., and Cagan, J., 2001, Formal Engineering Design Synthesis,
Cambridge University, Cambridge, England, pp. 65–91

[96] Nagl, M., 1976, “Formal Languages of Labeled Graphs,” J. Comput., 16(1–2),
pp. 113–137.

[97] Chomsky, N., 1980, Studies on Semantics in Generative Grammar (Walter de
Gruyter, New York, NY, 1980).

021003-8 / Vol. 11, JUNE 2011 Transactions of the ASME

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1115/1.1289637
http://dx.doi.org/10.1016/S0010-4485(00)00077-4
http://dx.doi.org/10.1115/1.1683856
http://dx.doi.org/10.1115/1.1683856
http://dx.doi.org/10.1016/S0065-2458(08)60176-X
http://dx.doi.org/10.1017/S0269888900006780
http://dx.doi.org/10.1016/0004-3702(89)90077-5
http://dx.doi.org/10.1207/s15516709cog1204_3
http://dx.doi.org/10.3758/BF03195939
http://dx.doi.org/10.1016/j.aei.2004.09.003
http://dx.doi.org/10.1115/1.1884618
http://dx.doi.org/10.1115/1.1884618
http://dx.doi.org/10.1115/1.1344238
http://dx.doi.org/10.1016/S0010-4485(01)00053-7
http://dx.doi.org/10.1016/S0010-4485(01)00053-7
http://dx.doi.org/10.1016/j.cad.2007.09.003
http://dx.doi.org/10.1504/IJMASSC.2005.007354
http://dx.doi.org/10.1115/1.3086032
http://dx.doi.org/10.1115/1.2830844
http://dx.doi.org/10.1080/09544820701546165
http://dx.doi.org/10.1007/BF01638099
http://dx.doi.org/10.1007/BF01608361
http://dx.doi.org/10.1007/BF01608350
http://dx.doi.org/10.1068/b070399
http://dx.doi.org/10.1007/BF02241975


[98] Ehrig, H., Kreowski, H. J., Maggiolo-Schettini, A., Rosen, B. K., and Win-
kowski, J., 1981, “Transformations of Structures—An Algebraic Approach,” J
Math. Syst. Theory, 14(4), pp. 305–334.

[99] Geiß, R., Batz, G. V., Grund, D., Hack, S., and Szalkowski, A., 2006, “GrGen:
A Fast SPO-Based Graph Rewriting Tool,” Graph Transformations, Springer,
Berlin, pp. 383–397.

[100] Helms, B., and Shea, K., 2010, “Object-Oriented Concepts for Computational
Design Synthesis,” 11th International Design Conference DESIGN 2010,D.
Marjanović, M. �Storga, N. Pavković, and N. Bojčetić, eds.,. Dubrovnik,
Croatia.

[101] Helms, B., Shea, K., and Hoisl, F., 2009, “A Framework for Computational
Design Synthesis Based on Graph-Grammars and Function-Behavior-
Structure,” ASME 2009 International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference. San Diego.

[102] Alber, R., and Rudolph, S., 2003, “‘43’—A Generic Approach for Engineering
Design Grammars,” Proceedings AAAI Spring Symposium “Computational
Synthesis,” Stanford, CA, AAAI Technical Report SS-03-02.

[103] Schäfer, J., and Rudolph, S., 2005, “Satellite Design by Design Grammars,”
Aerosp. Sci. Technol., 9(1), pp. 81–91.

[104] Patel, J., and Campbell M. I., 2010, “An Approach to Automate and Optimize
Concept Generation of Sheet Metal Parts by Topological and Parametric
Decoupling,” ASME J. Mech. Des.,” 132(5), p. 051001.

[105] Agu, D., and Campbell, M. I., 2010, “Automated Analysis of Product Disassem-
bly to Determine Environmental Impact,” Int. J. Sustain. Des., 1, pp. 241–256.

[106] Brimble, R., and Sellini F., 2000, The MOKA Modelling Language, Knowl-
edge Engineering and Knowledge Management Methods, Models, and Tools
(Lecture Notes in Computer Science) Vol. 1937/2000, pp. 95–120.

[107] Kerzhner, A. A., and Paredis C. J. J., “Using Domain Specific Languages to
Capture Design Synthesis Knowledge for Model-Based Systems Engineer-
ing,” ASME 2009 International Design Engineering Technical Conference
and Computers and Information in Engineering Conference IDETC/CIE2009,
San Diego, DETC2009-87286.

[108] Chau, H. H., Chen, X. J., McKay, A., and de Pennington, A., 2004,
“Evaluation of a 3D Shape Grammar Implementation,” Design Computing
and Cognition 04, J. S. Gero, ed., Kluwer Academic Publishers, Cambridge,
pp. 357–376.

[109] Hoisl, F., and Shea, K., 2011, “An Interactive, Visual Approach to Developing
and Applying Parametric 3D Spatial Grammars”, Artif. Intell. Eng. Des. Anal.
Manuf., 25(4), in press.

[110] McCormack, J. P., and Cagan, J., 2002, “Supporting Designer’s Hierarchies through
Parametric Shape Recognition,” Environ. Plan. B: Plan. Des., 29, pp. 913–931.

[111] McCormack, J. P., and J. Cagan, 2006, “Curve-Based Shape Matching – Sup-
porting Designers’ Hierarchies Through Parametric Shape Recognition of Ar-
bitrary Geometry,” Environ. Plann. B, 33(4), pp. 523–540.

[112] Jowers, I., Hogg, D., McKay, A., Chau, H., and de Pennington, A., 2010,
“Shape Detection With Vision: Implementing Shape Grammars in Conceptual
Design,” Res. Eng. Des., 21, pp. 235–247.

[113] Heisserman, J., Mattikalli, R., and Callahan, S., 2004, “A Grammatical
Approach to Design Generation and its Application to Aircraft Systems,” Pro-
ceedings of Generative CAD Systems Symposium ’04, Pittsburgh, Pennsylva-
nia, July 12–14, 2004.

[114] Heisserman, J., 1994, “Generative Geometric Design,” IEEE Comput.
Graphics Appl., 14(2), pp. 37–45.

[115] Yogev, O., Shapiro, A. A., and Antonsson, E. K., 2009, “Computational Evo-
lutionary Embryogeny,” IEEE Trans. Evol. Comput., 14(2), pp. 301–325

[116] Orsborn, S., Boatwright, P., and Cagan, J., 2008, “Identifying Product Shape
Relationships Using Principal Component Analysis,” Res. Eng. Des., 18(4),
pp. 181–196.

[117] Orsborn, S., Cagan, J., and Boatwright, P., 2008, “A Methodology for Creating
a Statistically Derived Shape Grammar Composed of Non-Obvious Shape
Chunks,” Res. Eng. Des., 18(4), pp. 163–180.

[118] Knight, T. W., 2000, “Shape Grammars in Education and Practice: History
and Prospects,” Int. J. Des. Comput., 2.

[119] Gick, M. L., and Holyoak, K. J., 1980, “Analogical Problem Solving,” Cogn.
Psychol., 12, pp. 306–355.

[120] Gordon, W. J. J., Synectics (Harper & Row, NY, 1961)
[121] Goel, A. K., 1997, “Design, Analogy and Creativity,” IEEE Expert Intell.

Syst. Appl., 12, pp. 62–70.
[122] Gentner, D., 1983, “Structure-Mapping: A Theoretical Framework for Ana-

logy,” Cogn. Sci., 7(2), pp. 155–170.
[123] Gick, M., and Holyoak, K. J., 1983, “Schema Induction and Analogical Trans-

fer,” Cogn. Psychol., 15(1), pp. 1–38.
[124] Bhatta, S., and Goel, A., 1997, “Learning Generic Mechanisms for Innovative

Design Adaptation,” J. Learn. Sci., 6(4), pp. 367–396.
[125] Gero, J. S., and Maher, M. L., 1991, “Mutation and Analogy to Support Crea-

tivity in Computer-aided design,” Proceedings of the Computer Aided Archi-
tectural Design Futures ’91, Zurich, pp. 241–249.

[126] Davies, J., and Goel, A. K., 2001, “Visual Analogy in Problem Solving,” Pro-
ceedings of the International Joint Conference on Artificial Intelligence.

[127] Tseng, I., Moss, J., Cagan, J., and Kotovsky, K., 2008, “The Role of Timing
and Analogical Similarity in the Stimulation of Idea Generation in Design,”
Des. Stud., 29, pp. 203–221.

[128] McAdams, D. A., and Wood, K. L., 2002, “A Quantitative Similarity Metric
for Design by Analogy,” J. Mech. Des., 124(2), pp. 173–182.

[129] Wiratunga, N., Craw, S. and Rowe, R., 2002, “Learning to Adapt for Case-
Based Design,” Proceedings of the Sixth European Conference on Case-Based
Reasoning, Springer-Verlag, Aberdeen, Scotland, Sept. 4–7, pp. 421–435.

[130] Fantoni, G., Taviani, C., and Santoro, R., 2007, “Design by Functional Syno-
nyms and Antonyms: A Structured Creative Technique Based on Functional
Analysis,” Proc. Inst. Mech. Eng., Part B, 221, pp. 673–683.

[131] Linsey, J., Wood, K., and Markman, A., 2008, “WordTrees: A Method for
Design-by-Analogy,” Proceedings of the 2008 ASEE Annual Conference and
Exhibition, Pittsburgh, PA.

[132] Bohm, M. R., and Stone, R. B., 2009, A Natural Language To Component
Term Methodology: Towards A Form Based Concept Generation Tool,
DETC2009-86581.

[133] Yamamoto, E., Taura, T., and Ohashi, S., 2009. “Thesaurus for Natural-Lan-
guage-Based Conceptual Design,” The ASME 2009 International Design En-
gineering Technical Conference and Computers and Information in
Engineering Conference IDETC/CIE2009, San Diego, DETC2009-86943.

[134] Balazs, M. E., and Brown, D.C., “Design Simplification by Analogical Reason-
ing,” Knowledge Intensive Computer Aided Design (Kluwer Academic,
Dordrecht, Netherlands, 2001).

[135] Börner, K., Pippig, E., Tammer, E., and Coulonet, C., 1996, “Structural Simi-
larity and Adaptation,” Proceedings of the Third European Workshop Case-
Based Reasoning, Springer-Verlag, New York, pp. 58–75.

[136] Qian, L., and Gero, J., 1992 “A Design Support System Using Analogy,” Pro-
ceedings of the Second International Conference AI in Design, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, pp. 795–813.

[137] Bhatta, S., Goel, A. K., and Prabhakar, S., 1994, “Innovation in Analogical
Design: A Model-Based Approach,” Proceedings of Third International Con-
ference AI in Design, Kluwer, pp. 57–74.

[138] Kulinski, J., and Gero, J. S., 2001, “Constructive Representation in Situated
Analogy in Design,” CAADFutures 2001, B. de Vries, J. van Leeuwen, and H.
Achten, eds., Kluwer, Dordrecht, pp. 507–520.

[139] Kolodner, J. L., Case-Based Reasoning (Morgan Kaufmann, California,
1993).

[140] Watson, I., and Perera R. S., 1997, Case Based Design: A Review and Analy-
sis of Building Design Applications, Artif. Intell. Eng. Des. Anal. Manuf.,
11(1), pp. 59–87.

[141] Reisbeck, C. K., and Schank, R. C., Inside Case-Based Reasoning (Lawrence
Erlbaum Associates, Hillsdale, NJ, 1989).

[142] Aamodt, A., and Plaza, E., 1994, “Case-Based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches,” AI Commun.,
7(1), pp. 39–59.

[143] Heylighen, A., and Neuckermans, H., 2001, A Case Base for Case Based
Design Tools for Architecture,” Comput.- Aided Des., 33, pp. 1111–1122.

[144] Goel, A. K., and Craw, S., 2006, “Design, Innovation and Case-Based Reason-
ing,” Knowl. Eng. Rev., 20(3), pp. 271–276.

[145] Watson, I., and Marir, F., 1994, “Case-Based Reasoning: A review,” Knowl.
Eng. Rev., 9(4), pp. 327–354.

[146] Chandrasekaran, B., 1990, “Design Problem Solving: A Task Analysis,” AI
Mag. 11, pp. 59–71.

[147] Schank, R. C., and Abelson, R. P., Scripts, Plans, Goals and Understanding
(Erlbaum, Hillsdale, New Jersey, 1977).

[148] Kolodner, J. L., 1983, “Maintaining Organization in a Dynamic Long-Term
Memory,” Cognit. Sci., 7(4), pp. 243–280.

[149] Kolodner, J. L., 1983, “Reconstructive Memory: A Computer Model,” Cognit.
Sci., 7(4), pp. 281–328.

[150] Navinchandra, D., 1987, “Exploring for Innovative Designs by Relaxing Criteria
and Reasoning from Precedent-Based Knowledge,” Ph.D. dissertation, M.I.T.

[151] Maher, M. L., and Zhao, F., 1987, “Using Experience to Plan the Synthesis of
New Designs,” Expert Systems in Computer Aided Design, J. Gero, ed., North
Holland, Amsterdam, The Netherlands.

[152] Schank, R., Dynamic Memory: A Theory of Reminding and Learning in Com-
puters and People (Cambridge University, Cambridge, UK, 1982)

[153] Porter, B. W., and Bareiss, E. R., 1986, “PROTOS: An Experiment in Knowledge
Acquisition for Heuristic Classification Tasks,” Proceedings of the First Interna-
tional Meeting on Advances in Learning (IMAL), Les Arcs, France, pp. 159–174.

[154] Falkeneheimer, B., Forbus, K. D., and Gentner, D., 1986, “The Structure Map-
ping Engine,” Proceeding of the Sixth National Conference on Artificial Intel-
ligence, Philadelphia, PA.

[155] Navinchandra, D., Exploration and Innovation in Design: Towards a Compu-
tational Model (Springer Verlag, New York, NY, 1991).

[156] Maher, M. L., and Zhang, D. M., 1991, “CADSYN: Using Case and Decom-
position Knowledge for Design Synthesis,” Artificial Intelligence in Design, J.
S. Gero, ed., Butterworth-Heinmann, Oxford, UK.

[157] Domeshek, E., 1993, “A Case Study of Case Indexing: Designing Index Fea-
ture Sets to Suit Task Demands and Support Parallelism,” Advances in Con-
nectionnist and Neural Computation Theory, Analogical connections J.
Barenden and K. Holyoak, eds., Vol. 2, Norwood, NJ.

[158] Avramenko, Y., and Kraslawski A., 2008, Case Based Design: Applications in
Process Engineering, Studies in Computational Intelligence, Springer-Verlag,
Berlin, Vol. 87.

[159] Chakrabarti, A., and Shu, L. H., 2010, “Guest Editorial: Biologically Inspired
Design,” Artif. Intell. Eng. Des. Anal. Manuf., 24, pp. 453–454.

[160] Benami, O., and Jin, Y., 2002, “Creative Stimulation in Conceptual Design,”
Proceedings of ASME Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference (DETC/CIE), Montreal,
QC, Canada, DETC2002/DTM-34023.

[161] Helms, M. E., Vattam, S. S., and Goel, A. K., 2009, “Biologically Inspired
Design: Process and Products,” Des. Stud., 30(5), pp. 606–622.

[162] Vattam, S. S., Helms, M. E., and Goel, A. K., 2008, “Compound Analogical
Design: Interaction Between Problem Decomposition and Analogical Transfer in

Journal of Computing and Information Science in Engineering JUNE 2011, Vol. 11 / 021003-9

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1007/BF01752403
http://dx.doi.org/10.1007/BF01752403
http://dx.doi.org/10.1016/j.ast.2004.08.003
http://dx.doi.org/10.1115/1.4001409
http://dx.doi.org/10.1068/b12839
http://dx.doi.org/10.1068/b31150
http://dx.doi.org/10.1109/38.267469
http://dx.doi.org/10.1109/38.267469
http://dx.doi.org/10.1109/TEVC.2009.2030438
http://dx.doi.org/10.1007/s00163-007-0035-9
http://dx.doi.org/10.1007/s00163-007-0036-8
http://dx.doi.org/10.1016/0010-0285(80)90013-4
http://dx.doi.org/10.1016/0010-0285(80)90013-4
http://dx.doi.org/10.1207/s15516709cog0702_3
http://dx.doi.org/10.1016/0010-0285(83)90002-6
http://dx.doi.org/10.1207/s15327809jls0604_2
http://dx.doi.org/10.1115/1.1475317
http://dx.doi.org/10.1243/09544054JEM635
http://dx.doi.org/10.1016/S0010-4485(01)00055-0
http://dx.doi.org/10.1017/S0269888906000609
http://dx.doi.org/10.1017/S0269888900007098
http://dx.doi.org/10.1017/S0269888900007098
http://dx.doi.org/10.1207/s15516709cog0704_1
http://dx.doi.org/10.1207/s15516709cog0704_2
http://dx.doi.org/10.1207/s15516709cog0704_2


Biologically Inspired Design,” Proceedings of the Third International Conference
on Design Computing and Cognition, Atlanta, June, Springer, Berlin, pp. 377–396.

[163] Vattam, S. S., Helms, M. E., and Goel, A. K., 2010, “A Content Account of
Creative Analogies in Biologically Inspired Design,” Artif. Intell. Eng. Des.
Anal. Manuf., 24, pp. 467–481.

[164] Sartori, J., Pal, U., and Chakrabarti, A., 2010, “A Methodology for Supporting
“Transfer” in Biomimetic Design,” Artif. Intell. Eng. Des. Anal. Manuf., 24,
pp. 483–505.

[165] Hill, B., Innovationsquelle Natur: Naturorientierte Innovationsstrategie für
Entwickler, Konstrukteure und Designer (Shaker, Aachen, Germany, 1997).

[166] Hill, B., 2005, “Goal Setting through Contradiction Analysis in the Bionics-
Oriented Construction Process,” CIM, Blackwell Publishing Ltd, Oxford, Vol.
14(19), pp. 59–65.

[167] Schild, K., Herstatt, C., and Lüthje, C., How to Use Analogies for Break-
through Innovations, (Technical University of Hamburg, Institute of Technol-
ogy and Innovation Management, Hamburg, 2004).

[168] Gramann, J., 2004, “Problemmodelle und Bionik als Methode,” Dissertation,
TU, Munich.

[169] Vincent, J., and Mann, D., 2002, “Systematic Technology Transfer From Biol-
ogy to Engineering,” Philos. Trans. R. Soc. London, 360, pp. 159–173.

[170] Vincent, J. F. V., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., and Pahl,
A. K., 2006, “Biomimetics: Its Practice and Theory,” J. R. Soc., Interface, 3,
pp. 471–482.

[171] Tinsley, A., Midha, P., Nagel, R., McAdams, D., Stone, R., and Shu, L., 2007,
“Exploring the Use of Functional Models as a Foundation for Biomimetic
Conceptual Design,” ASME Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Las Vegas, Nevada,
DETC 2007-35604.

[172] Vattam, S., Wiltgen, B., Helms, M., Goel, A. K., and Yen, J., 2010, “DANE:
Fostering Creativity in and through Biologically Inspired Design,” To appear

in Proceedings of 1st International Conference on Design Creativity
(ICDC2010), December, Kobe, Japan.

[173] Wilson, J., Chang, P., Yim, S., and Rosen, D., 2009, “Developing a Bio-
Inspired Design Repository Using Ontologies,” Proceedings of ASME Design
Engineering Technical Conferences and Computers and Information in Engi-
neering Conference, IDETC/CIE, San Diego, CA, DETC2009-87272.

[174] Wilson, J. O., and Rosen, D., 2007, “Systematic Reverse Engineering of Bio-
logical Systems,” Proceedings of ASME Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference (IDETC/
CIE), Las Vegas, NV, DETC2007/DTM-35395.

[175] Hacco, E., and Shu, L., 2002, “Biomimetic Concept Generation Applied to
Design for Remanufacture,” Proceedings of ASME Design Engineering Tech-
nical Conferences and Computers and Information in Engineering Conference,
Montreal, Sept. 29–Oct. 2, DETC2002/DFM-34177.

[176] Shu, L. H., 2010, “A Natural-Language Approach to Biomimetic Design,”
Artif. Intell. Eng. Des., Anal. Manuf., 24, pp. 507–519.

[177] Sarkar, P., Phaneendra, S., and Chakrabarti, A., 2008, “Developing Engineer-
ing Products Using Inspiration From Nature,” ASME J. Inf. Sci. Eng., 8(3),
pp. 031001.

[178] Srinivasan, V., and Chakrabarti, A., Supporting Process and Product Knowl-
edge in Biomimetic Design, Special Issue on Design and Nature, I. C. Gebe-
shuber, H. Abdel-Aal, Guest Editors, Int. J. Des. Eng., Inderscience (In press).

[179] Boyer, F., Chablat, D., Lemoine, P., and Wenger, P., 2009, “The Eel-Like
Robot,” Proceedings of ASME Design Engineering Technical Conference and
Computers and Information in Engineering Conference, Sand Diego, CA,
DETC2009-86328.

[180] Chakrabarti, A., Ojha, S., Pal, U., Ranjan, B. S. C., Srinivasan, V., and Ranga-
nath, R., 2009, “Exploring Serially Connected Multi-Tracked All-Terrain
Vehicles for Improved Obstacle Climbing Performance,” 14th National Con-
ference on Machines and Mechanisms (NaCoMM09), Durgapur.

021003-10 / Vol. 11, JUNE 2011 Transactions of the ASME

Downloaded 29 May 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1115/1.2956995

	s1
	s2
	lcor1
	s2A
	s2A1
	s2B
	s3
	s3A
	s3B
	s3C
	s3D
	s4
	s4A
	s4B
	s4C
	s4D
	s5
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62
	B63
	B64
	B65
	B66
	B67
	B68
	B69
	B70
	B71
	B72
	B73
	B74
	B75
	B76
	B77
	B78
	B79
	B80
	B81
	B82
	B83
	B84
	B85
	B86
	B87
	B88
	B89
	B90
	B91
	B92
	B93
	B94
	B95
	B96
	B97
	B98
	B99
	B100
	B101
	B102
	B103
	B104
	B105
	B106
	B107
	B108
	B109
	B110
	B111
	B112
	B113
	B114
	B115
	B116
	B117
	B118
	B119
	B120
	B121
	B122
	B123
	B124
	B125
	B126
	B127
	B128
	B129
	B130
	B131
	B132
	B133
	B134
	B135
	B136
	B137
	B138
	B139
	B140
	B141
	B142
	B143
	B144
	B145
	B146
	B147
	B148
	B149
	B150
	B151
	B152
	B153
	B154
	B155
	B156
	B157
	B158
	B159
	B160
	B161
	B162
	B163
	B164
	B165
	B166
	B167
	B168
	B169
	B170
	B171
	B172
	B173
	B174
	B175
	B176
	B177
	B178
	B179
	B180

